leetcode 150. 逆波兰表达式求值(详解)

这篇博客介绍了如何使用栈处理逆波兰表达式以求解数学表达式,同时也阐述了中缀表达式转为后缀表达式的过程。通过中缀转后缀,可以简化运算并避免优先级问题。示例展示了具体的运算步骤,如将中缀表达式转换为后缀表达式,然后用后缀表达式进行计算。文章强调了逆波兰表达式在计算上的优势和在程序处理中的高效性。
摘要由CSDN通过智能技术生成

根据 逆波兰表示法,求表达式的值。

有效的算符包括 +、-、*、/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。

注意 : 两个整数之间的除法只保留整数部分。

可以保证给定的逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。

示例 1:

输入:tokens = [“2”,“1”,"+",“3”,"*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) *3) = 9

示例 2:

输入:tokens = [“10”,“6”,“9”,“3”,"+","-11","","/","",“17”,"+",“5”,"+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

提示:

  • 1 <= tokens.length <= 104
  • tokens[i] 是一个算符("+"、"-"、"*" 或 “/”),或是在范围 [-200, 200] 内的一个整数

逆波兰表达式:

逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。

  • 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
  • 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。

逆波兰表达式主要有以下两个优点:

  • 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
  • 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中

思路:

在这里插入图片描述

  1. 遇到操作数入栈
  2. 遇到操作符,连续取两个栈顶的数据进行运算,运算结果入栈

代码如下:

class Solution {
public:
    int evalRPN(vector<string>& tokens) {
        stack<int> st;
        for(const auto& e : tokens)
        {
            if(e=="+")
            {
                int right=st.top();  
                st.pop();
                int left=st.top();
                st.pop();
                st.push(left+right);

            }
            else if(e=="-")
            {
                int right=st.top();
                st.pop();
                int left=st.top();
                st.pop();
                st.push(left-right);
            }
            else if(e=="*")
            {
                int right=st.top();
                st.pop();
                int left=st.top();
                st.pop();
                st.push(left*right);
            }
            else if(e=="/")
            {
                int right=st.top();  
                st.pop();
                int left=st.top();
                st.pop();
                st.push(left/right);
            }
            else
            {
                st.push(stoi(e));  //将字符串转化成数字在放入到栈中
            }
        }
        return st.top();

    }
};

补充:

  • 程序处理中缀表达式时,不太好运算,因为运算符的优先级问题
  • 程序处理中缀表达式的步骤:
    1. 中缀表达式转换成后缀表达式(逆波兰表达式)
    1. 用后缀表达式在进行运算

整体思路:
在这里插入图片描述

中缀表达式转换成后缀表达式(逆波兰表达式):

  1. 遇到操作数-输出/存储容器
  2. 遇到操作符,如果栈为空,或者操作符优先级高于栈顶的运算符,就入栈(如果遇到()设置flag进入括号为1,出括号为0,出栈顶的运算符)
  3. 遇到操作符,栈不为空,操作符比栈顶运算符优先级低或者相等,出栈顶的运算符
  4. 中缀表达式走完,把栈里面运算符都拿出来

用后缀表达式在进行运算:

  1. 遇到操作数入栈
  2. 遇到操作符,连续取两个栈顶的数据进行运算,运算结果入栈
评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值