一、相关系数
又称皮尔逊相关系数,是研究变量之间相关关系的度量
二、计算方式
一般用字母r表示
两种计算公式
(1)
Cov(X,Y)为X与Y的协方差
Var[X]为X的方差
Var[Y]为Y的方差
(2)
总体皮尔逊相关系数是一个在【-1,1】之间波动变化的数值。
绝对值接近1说明变量之间具有明显的线性关系,接近0则说明变量之间几乎不存在相关关系。
三、相关系数的解释
1.|r| >= 0.8时,可视为两个变量之间高度相关
如图:数据与预测函数非常接近,甚至个别点落在线上,我们成为强相关。
2.|r| < 3 时,说明两个变量之间的相关系数程度极弱,可视为不相关
如图,样本点与预测函数相差较大,我们成为弱相关
除了强相关与弱相关,还有中度相关以及低度相关
3.0.5 <= |r| < 0.8时,可视为中度相关
4.0.3 <= |r| < 0.5时,可视为低度相关
四、示例
# 首先要从sklearn库中调取相应的包(注意:要从pip下载sklearn,要输入完整名scikit-learn)
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
# data为获取的上面图中的信息
x = data[['广告投入']]
y = data[['销售额']]
# 将数据进行训练
lr.fit(x, y)
# 将数据代入进去,进行预测,得到预测标签,并与真实数据标签进行比对,得到正确率,即相关系数
score = lr.score(x, y)
将广告投入与销售额进行相关系数计算
算的相关系数为0.8225,说明广告投入与销售额之间有高度的线性正相关关系。