相关系数-简单描述

本文介绍了皮尔逊相关系数的计算方法,解释了其在衡量变量间线性关系强度的作用,并通过sklearn库的LinearRegression实例展示了如何计算广告投入与销售额的强相关性,结果显示相关系数为0.8225,表明高度正相关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、相关系数

又称皮尔逊相关系数,是研究变量之间相关关系的度量

二、计算方式

一般用字母r表示

两种计算公式

(1)
在这里插入图片描述

Cov(X,Y)为X与Y的协方差

Var[X]为X的方差

Var[Y]为Y的方差

(2)
在这里插入图片描述

总体皮尔逊相关系数是一个在【-1,1】之间波动变化的数值。
绝对值接近1说明变量之间具有明显的线性关系,接近0则说明变量之间几乎不存在相关关系。

三、相关系数的解释

1.|r| >= 0.8时,可视为两个变量之间高度相关
在这里插入图片描述

如图:数据与预测函数非常接近,甚至个别点落在线上,我们成为强相关。

2.|r| < 3 时,说明两个变量之间的相关系数程度极弱,可视为不相关
在这里插入图片描述

如图,样本点与预测函数相差较大,我们成为弱相关

除了强相关与弱相关,还有中度相关以及低度相关
3.0.5 <= |r| < 0.8时,可视为中度相关
4.0.3 <= |r| < 0.5时,可视为低度相关

四、示例

在这里插入图片描述

# 首先要从sklearn库中调取相应的包(注意:要从pip下载sklearn,要输入完整名scikit-learn)
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
# data为获取的上面图中的信息
x = data[['广告投入']]
y = data[['销售额']]
# 将数据进行训练
lr.fit(x, y)
# 将数据代入进去,进行预测,得到预测标签,并与真实数据标签进行比对,得到正确率,即相关系数
score = lr.score(x, y)

将广告投入与销售额进行相关系数计算
算的相关系数为0.8225,说明广告投入与销售额之间有高度的线性正相关关系。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值