AI视频监控平台开发流程(附源代码)!!!

本文介绍了AI视频监控平台的开发流程,包括技术选型(Springboot, Websocket等),业务关系图,数据库设计,源代码开放以及详细功能如摄像头管理,视频流管理,告警管理和算法分配。提供了模型测试和算法服务二次开发的步骤,附带了源代码链接和算法模型资源。" 132955133,19671616,C++ 中禁止数据成员初始值设定的技巧,"['C++', '编程', '开发语言']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录索引

一、 前言

二、 技术选型

三、 业务关系图

四、 数据库关系图

五、 视频中台源代码

六、 视频中台功能明细

七、 模型测试功能展示

7.1新增本地算法

7.2上传测试图片

八、 算法服务二次开发流程(赠送算法模型)

九、 实现代码及部署说明

十、 其他功能展示

10.1 摄像头管理

10.2视频流管理

10.3告警管理

10.4算法分配

10.5 BI统计

本项目基于AI人工智能行业需求进行定制开发,集摄像头视频流,算法模型,检测识别,数据推送,数据统计,及可视化大数据展示等主要功能于一体,方便客户操作,贴合业务开展。

本项目采用单体架构方式,采用如下技术实现:

Springboot

Websocket

Mybaits-plus

Javacv

Freemarker

Layui

Echart

Jquery

前端框架采用pear admin

核心模块包含三个部分:视频中台服务、视频播放服务,算法模型服务。

用户通过视频中台服务对算法模型,摄像头视频流等配置,查看告警信息,数据统计信息等;

视频播放服务用于在浏览器播放实时视频流;算法模型服务用于进行目标检测识别,通过http接口与视频中台进行交互,比如获取配置的视频流地址,推送检测结果到视频中台等。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值