2024深度学习发论文&模型涨点之——迁移学习+多模态
迁移学习和多模态结合的研究进展表明,这种技术能够有效提升模型的泛化能力和准确率。具体来说,通过将源领域学习到的多模态知识迁移到目标领域,可以快速适应目标领域的任务需求。此外,这种结合还能提高模型在新任务上的准确率,例如在胸部X光图像分类中,通过多层多模态融合的深度神经网络模型MultiFusionNet,实现了高达99.6%的准确率。
在实际应用方面,迁移学习与多模态技术的结合也展现出了巨大的潜力。例如,在医学图像分类领域,通过结合预训练模型和多模态特征融合,可以提高分类的准确性并降低标注成本。这些研究不仅推动了模型性能的极限突破,也为未来的多模态理解和生成任务提供了有价值的参考。
如果有同学想发表相关论文,小编整理了一些迁移学习+多模态【论文代码】合集,以下放出部分,全部论文PDF版,需要的同学公重号【AI科研灵感】回复“迁移学习+多模态”即可全部领取
论文精选
论文1:
A Novel Transfer Learning Framework for Multimodal Skin Lesion Analysis
多模态皮肤病变分析的新型迁移学习框架
方法
-
迁移学习与视觉变换器(ViT)模型:提出了一种结合迁移学习和视觉变换器(ViT)模型的框架,用于准确检测包括皮肤癌在内的皮肤状况。
-
多模态数据融合:通过结合宏观皮肤图像和患者元数据,利用计算机视觉和机器学习技术,提出了一种新颖的多模态框架。
-
通道注意力机制和感兴趣区域(ROI):在模型中引入通道注意力机制和ROI,以提高皮肤病变的检测精度。
-
数据预处理和增强:对HAM10000数据集和实时数据集进行预处理,包括调整图像大小、归一化像素强度,并应用数据增强技术,如旋转、翻转和缩放。
创新点
-
多模态融合与ViT模型的结合:通过结合多模态数据和ViT模型,提出了一种新颖的框架,该框架在皮肤病变分类中实现了99%的显著准确率,超越了传统方法。
-
临床影响和现实世界可行性:展示了所开发方法的变革潜力,通过在敏感性、特异性和精确性方面的显著改进,实现了99%的卓越准确率,强化了其在临床设置中实际应用的潜力。
-
效率和自动化:通过自动化和简化皮肤病变分析,提高了皮肤科的效率和信心,减轻了皮肤科医生的工作负担,提高了医疗服务效率。
-
计算效率和可扩展性:评估了ViT模型的计算效率和可扩展性,以及其减轻皮肤科医生工作负担和增强卫生服务的潜力。
论文2:
Audio-visual cross-modality knowledge transfer for machine learning-based in-situ monitoring in laser additive manufacturing
激光增材制造中基于机器学习的现场监测的视听跨模态知识转移
方法
-
跨模态知识转移(CMKT):提出了一种从源模态到目标模态的知识转移方法,用于激光增材制造(LAM)的现场监测。
-
语义对齐:通过建立共享编码空间来促进知识转移,使用语义对齐损失来对齐相同类别的分布,并使用分离损失来区分不同类别的分布。
-
全监督映射和半监督映射:通过全监督和半监督学习从另一种模态中派生出一个模态的特征。
-
多模态数据融合:在异常检测案例研究中,将所提出的CMKT方法与视听融合的多模态数据融合方法进行了比较。
创新点
-
跨模态知识转移(CMKT)方法:提出了一种新的方法,通过在训练阶段从源模态转移到目标模态的知识,从而在预测阶段移除源模态,提高了操作和计算效率。
-
语义对齐:提出了一种在共享编码空间中对视听模态进行语义对齐的CMKT方法,提高了模型的泛化能力。
-
映射方法:提出了两种跨模态映射方法,通过全监督和半监督学习进行知识转移,提高了预测性能。
-
预测性能与操作效率的平衡:所提出的CMKT方法在保持与多模态融合相当的预测准确性的同时,减少了传感器数量和数据量,降低了硬件、计算和运营成本。
论文3:
Cross-Modal Dynamic Transfer Learning for Multimodal Emotion Recognition
用于多模态情感识别的跨模态动态迁移学习
方法
-
跨模态动态迁移学习(CDaT):提出了一种表示学习方法,通过单模态掩蔽和跨模态表示迁移学习动态过滤低置信度模态,并用高置信度模态补充。
-
辅助网络:训练一个辅助网络来学习模型置信度分数,以确定哪个模态是低置信度的,以及应该从其他模态转移多少信息。
-
概率知识转移损失(PKT):利用PKT损失在不同模态之间进行转移,无需为知识转移添加额外参数,适用于不同特征维度之间的转移。
创新点
-
动态模态调整:基于掩蔽模态推理的结果,动态调整跨模态知识转移,以解决模态间的语义不对齐问题。
-
模型无关性:CDaT可以与任何融合模型一起使用,因为它通过概率知识转移损失在模态间进行低层次的信息转移。
-
实验验证:在CMU-MOSEI和IEMOCAP数据集上进行了实验,证明了CDaT在不同最先进的融合模型上的情感识别性能提升。
论文4:
Cross-Subject Emotion Classification based on Dual-Attention Mechanism and Meta-Transfer Learning
基于双注意力机制和元迁移学习的跨主题情感分类
方法
-
双注意力网络:通过通道注意力块和时间注意力块提取EEG特征。
-
元迁移学习(MTL)策略:训练模型学习跨主题的共有和个体特征。
-
基于k-means聚类的元任务采样方法:自适应地对源域样本进行分组,从不同组中采样支持和查询集。
创新点
-
双注意力机制:有效提取EEG信号中区分情绪的关键通道和时间片段。
-
元迁移学习的应用:通过元迁移学习策略,使模型能够快速适应新主题的数据分布,减少对目标领域数据的依赖。
-
基于k-means聚类的元任务采样(DG采样器):通过增加支持和查询集之间的分布差异,增强模型的泛化能力。
如果有同学想发表相关论文,小编整理了一些迁移学习+多模态【论文】合集。
需要的同学公重号【AI科研灵感】回复“迁移学习+多模态”即可全部领取