这个切入点真是绝!迁移学习与多模态融合的结合,准确率接近完美,能发顶会且不卷!

2024深度学习发论文&模型涨点之——迁移学习+多模态

迁移学习和多模态结合的研究进展表明,这种技术能够有效提升模型的泛化能力和准确率。具体来说,通过将源领域学习到的多模态知识迁移到目标领域,可以快速适应目标领域的任务需求。此外,这种结合还能提高模型在新任务上的准确率,例如在胸部X光图像分类中,通过多层多模态融合的深度神经网络模型MultiFusionNet,实现了高达99.6%的准确率。

在实际应用方面,迁移学习与多模态技术的结合也展现出了巨大的潜力。例如,在医学图像分类领域,通过结合预训练模型和多模态特征融合,可以提高分类的准确性并降低标注成本。这些研究不仅推动了模型性能的极限突破,也为未来的多模态理解和生成任务提供了有价值的参考。

如果有同学想发表相关论文,小编整理了一些迁移学习+多模态【论文代码】合集,以下放出部分,全部论文PDF版,需要的同学公重号【AI科研灵感】回复“迁移学习+多模态”即可全部领取

论文精选

论文1:

A Novel Transfer Learning Framework for Multimodal Skin Lesion Analysis

多模态皮肤病变分析的新型迁移学习框架

方法

  • 迁移学习与视觉变换器(ViT)模型:提出了一种结合迁移学习和视觉变换器(ViT)模型的框架,用于准确检测包括皮肤癌在内的皮肤状况。

  • 多模态数据融合:通过结合宏观皮肤图像和患者元数据,利用计算机视觉和机器学习技术,提出了一种新颖的多模态框架。

  • 通道注意力机制和感兴趣区域(ROI):在模型中引入通道注意力机制和ROI,以提高皮肤病变的检测精度。

  • 数据预处理和增强:对HAM10000数据集和实时数据集进行预处理,包括调整图像大小、归一化像素强度,并应用数据增强技术,如旋转、翻转和缩放。

图片

创新点

  • 多模态融合与ViT模型的结合:通过结合多模态数据和ViT模型,提出了一种新颖的框架,该框架在皮肤病变分类中实现了99%的显著准确率,超越了传统方法。

  • 临床影响和现实世界可行性:展示了所开发方法的变革潜力,通过在敏感性、特异性和精确性方面的显著改进,实现了99%的卓越准确率,强化了其在临床设置中实际应用的潜力。

  • 效率和自动化:通过自动化和简化皮肤病变分析,提高了皮肤科的效率和信心,减轻了皮肤科医生的工作负担,提高了医疗服务效率。

  • 计算效率和可扩展性:评估了ViT模型的计算效率和可扩展性,以及其减轻皮肤科医生工作负担和增强卫生服务的潜力。

图片

论文2:

Audio-visual cross-modality knowledge transfer for machine learning-based in-situ monitoring in laser additive manufacturing

激光增材制造中基于机器学习的现场监测的视听跨模态知识转移

方法

  • 跨模态知识转移(CMKT):提出了一种从源模态到目标模态的知识转移方法,用于激光增材制造(LAM)的现场监测。

  • 语义对齐:通过建立共享编码空间来促进知识转移,使用语义对齐损失来对齐相同类别的分布,并使用分离损失来区分不同类别的分布。

  • 全监督映射和半监督映射:通过全监督和半监督学习从另一种模态中派生出一个模态的特征。

  • 多模态数据融合:在异常检测案例研究中,将所提出的CMKT方法与视听融合的多模态数据融合方法进行了比较。

图片

创新点

  • 跨模态知识转移(CMKT)方法:提出了一种新的方法,通过在训练阶段从源模态转移到目标模态的知识,从而在预测阶段移除源模态,提高了操作和计算效率。

  • 语义对齐:提出了一种在共享编码空间中对视听模态进行语义对齐的CMKT方法,提高了模型的泛化能力。

  • 映射方法:提出了两种跨模态映射方法,通过全监督和半监督学习进行知识转移,提高了预测性能。

  • 预测性能与操作效率的平衡:所提出的CMKT方法在保持与多模态融合相当的预测准确性的同时,减少了传感器数量和数据量,降低了硬件、计算和运营成本。

图片


论文3:

Cross-Modal Dynamic Transfer Learning for Multimodal Emotion Recognition

用于多模态情感识别的跨模态动态迁移学习

方法

  • 跨模态动态迁移学习(CDaT):提出了一种表示学习方法,通过单模态掩蔽和跨模态表示迁移学习动态过滤低置信度模态,并用高置信度模态补充。

  • 辅助网络:训练一个辅助网络来学习模型置信度分数,以确定哪个模态是低置信度的,以及应该从其他模态转移多少信息。

  • 概率知识转移损失(PKT):利用PKT损失在不同模态之间进行转移,无需为知识转移添加额外参数,适用于不同特征维度之间的转移。

图片

创新点

  • 动态模态调整:基于掩蔽模态推理的结果,动态调整跨模态知识转移,以解决模态间的语义不对齐问题。

  • 模型无关性:CDaT可以与任何融合模型一起使用,因为它通过概率知识转移损失在模态间进行低层次的信息转移。

  • 实验验证:在CMU-MOSEI和IEMOCAP数据集上进行了实验,证明了CDaT在不同最先进的融合模型上的情感识别性能提升。

图片


论文4:

Cross-Subject Emotion Classification based on Dual-Attention Mechanism and Meta-Transfer Learning

基于双注意力机制和元迁移学习的跨主题情感分类

方法

  • 双注意力网络:通过通道注意力块和时间注意力块提取EEG特征。

  • 元迁移学习(MTL)策略:训练模型学习跨主题的共有和个体特征。

  • 基于k-means聚类的元任务采样方法:自适应地对源域样本进行分组,从不同组中采样支持和查询集。

图片

创新点

  • 双注意力机制:有效提取EEG信号中区分情绪的关键通道和时间片段。

  • 元迁移学习的应用:通过元迁移学习策略,使模型能够快速适应新主题的数据分布,减少对目标领域数据的依赖。

  • 基于k-means聚类的元任务采样(DG采样器):通过增加支持和查询集之间的分布差异,增强模型的泛化能力。

图片

如果有同学想发表相关论文,小编整理了一些迁移学习+多模态【论文】合集。

需要的同学公重号【AI科研灵感】回复“迁移学习+多模态”即可全部领取

### 遥感多模态模型的研究方法 在探讨遥感多模态模型的研究方法时,可以现该领域涉及多种技术和策略的综合应用。一个优秀的多模态模型通常需要组合两种以上的技术[^1]。具体到遥感场景下,这类模型仅依赖于单一的数据源或模式,而是通过融合来自同传感器或多平台获取的信息来提升性能。 #### 数据集构建标注 构建高质量的数据集是开展有效研究的基础。针对遥感数据的特点,需特别注意样本的选择及其标签的质量控制。由于遥感影像具有高分辨率、大规模等特点,在创建用于训练和测试的数据集合过程中,应确保覆盖多样化的地理环境和社会经济背景下的实例,并提供精确的地物类别标记或其他形式的目标描述信息。 #### 特征提取表达学习 特征工程对于提高模型泛化能力至关重要。现代深度神经网络架构能够自动从原始输入中挖掘深层次语义特性。特别是积神经网络(CNNs)已被广泛应用于视觉任务;而对于文本或者其他非结构化数据,则可借助预训练语言模型来进行有效的表征学习[^2]。此外,考虑到遥感应用场景的独特需求,还可以探索专门设计的空间变换机制以及时间序列建模方案等高级功能模块。 #### 对齐转换框架 为了实现同类型感知信号间的一致性和交互操作性,“对齐”成为了一个核心概念。Multi-source Alignment 技术旨在建立异构数据间的映射关系,从而促进跨域知识迁移并增强理解力[^3]。在此基础上展起来的各种翻译/转导算法则进一步促进了信息传递效率的最大化,使得即使是在缺乏直接对应关系的情况下也能完成较为准确的任务推断过程。 #### 应用案例分析 实际项目实践中往往面临着诸多复杂因素的影响,因此有必要深入剖析典型的应用案例以提炼出通用的设计原则和技术路线图。比如城市规划中的土地利用监测、灾害应急响应期间的关键设施识别等问题都可以作为切入点展开讨论。通过对成功经验和失败教训的学习借鉴,有助于指导未来工作的方向选择展路径优化。 ```python import torch from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') text = "这是一段中文文本" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) print(output.last_hidden_state.shape) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值