2024深度学习发论文&模型涨点之——小样本目标检测
小样本目标检测(Few-shot Object Detection, FSOD)是当前计算机视觉领域的一个研究热点,它旨在解决传统目标检测模型需要大量训练数据和迭代步骤的问题,特别是在样本数量较少的情况下,如何利用少量标注样本来训练具有良好泛化能力的检测模型,并将其扩展到新任务上。
小样本目标检测是一个活跃的研究领域,它通过设计合理的训练方法、模型结构和损失函数,获得具有一定泛化能力的检测模型,实现复杂环境下对小样本目标的有效检测,在数据获取和标注困难的场景下具有重要的价值和意义。未来,小样本目标检测技术的研究将继续深入,探索更多新的方法和技术,以提高模型的性能和应用范围。
如果有同学想发表相关论文,小编整理了一些小样本目标检测【论文代码】合集,以下放出部分,全部论文PDF版,需要的同学公重号【AI科研灵感】回复“小样本目标检测”即可全部领取
论文精选
论文1:
Few-Shot Learning for Animal Identification: Enhancing Prototypical Networks with Convolutional Neural Networks
动物识别的少样本学习:通过卷积神经网络增强原型网络
方法
四层卷积神经网络(CNN)构建:构建了一个四层CNN来从动物图像中提取特征。
原型网络构建:使用原型网络进行有效的少样本学习。
超参数系