markdown语法
目录:
文章目录
换行
- 连续两个空格以上加回车
符号的使用
- \加符号本身,表示自身意思
- 示例\
- +
- -
- !
- 不加
后文会有具体用法 - 特殊符号
❤
✓
∞
ℝ
❦
字体
- 斜体
- 斜体
- 粗体
- 粗体
- 粗体斜文本
- 粗体斜文本
线
1. 分割线
- 三个*
- 三个-
2. 删除线
文字两端加~~
示例
代码块:
以下符号是在Tab键的上方
- 使用“
|在中间写入代码|
—>针对单行代码或是高亮 |使用三个|
—》适用于多行代码
#include<malloc.h>
typedef struct LinkNode{
char data;
struct LinkNode *next;
}LNode,*LinkList;
引用
- 在被引用的文本前加>和空格
实例展示
第一级
第二级
第三级
列表
1.无序列表
*,+,-,都加一个空格
- 示例
- 示例
- 示例
- 示例
- 示例
- 示例
2.有序列表
数字和一个英文句点,句点后加空格
- 示例
- 示例
- 示例
3.有序+无序同时使用
- 示例1
- 示例2
- 示例1
- 示例2
- 示例1
- 示例2
代码展示
注意:当想要输入时间,2024.1.3 i am happy 会被误当做列表
解决方法:在句点前加\
表格
对齐方式
冒号在左表示左对齐,在右表示右对齐,两边都有表示居中
- 示例
学号 姓名 班级 小王 男 1-3 小李 女 1-4 - 示例2
学号 姓名 班级 小王 男 1-3 小李 女 1-4
可以发现,示例1和示例2“班级”板块的对齐方式不同
链接
![图片网址][链接]
目录的使用:[TOC]
[TOC]
数学公式
LaTex数学公式
使用规则
- 空格:隔开单词,多个空格=一个空格
- 换行:\或\newline
- 分段:\par 或空一行
- 换页:\newpage 或\clearpage
- 行内公式:两个$$进行引用
- f ( x ) = x 2 f(x)=x^2 f(x)=x2
- 行间公式:两对$$进行引用
- x − 3 \sqrt{x-{3}} x−3
表示方法
-
指数和下标:-和_加相应字符
- a 1 a_{1} a1 x 2 x^{2} x2
- e − α t e^{-\alpha t} e−αt
- a i j 3 a^{3}_{ij} aij3
-
e
x
2
≠
e
x
2
e^{x^2} \neq {e^x}^2
ex2=ex2
\neq 代表不等于
-
a
m
p
e
2
a^{e^2}_{mp}
ampe2
指数在前,底数在后,部分整体用{}
-
平方根:\sqrt,n次方根:\sqrt[n]
- x \sqrt{x} x
- x 2 + y \sqrt{x^{2}+\sqrt{y} } x2+y
- 2 3 \sqrt[3]{2} 32
- √ [ x e + y 2 ] \surd[x^e+y^2] √[xe+y2]
-
上下水平线:\overline \underline
- m + n ‾ \overline{m+n} m+n
- m + n ‾ \underline{m+n} m+n
-
上下方画大括号:\overbrace \underbrace
- a + b + ⋯ + z ⏞ 26 \overbrace{ a+b+\cdots+z }_{26} a+b+⋯+z 26
- a + b + ⋯ + z ⏟ 26 \underbrace{a+b+\cdots+z}_{26} 26 a+b+⋯+z
-
向量:\vec \overrightarrow \overleftarrow
- a ⃗ A B → \vec a\quad\overrightarrow{AB} aAB
- b ⃗ B A ← \vec b\quad\overleftarrow{BA} bBA
-
分数:\frac{···}{···}排版
- 1 1 2 1\frac{1}{2} 121~hour
- x e k + 1 \frac{x^{e}} {k+1} k+1xe
- x 2 k + 2 x^{ \frac{2}{k+2}} xk+22
- x 1 / 2 x^{1/2} x1/2
-
积分运算符:\int * 求和:\sum 乘积:\prod
上限和下限用- _
- ∑ i = 1 n \sum_{i=1}~{n} ∑i=1 n
- ∫ 0 π 2 \int_{0}~{\frac{\pi}{2}} ∫0 2π
-
∏
ϵ
\prod_\epsilon
∏ϵ
+2}}$ - x 1 / 2 x^{1/2} x1/2
-
积分运算符:\int * 求和:\sum 乘积:\prod
上限和下限用- _
- ∑ i = 1 n \sum_{i=1}~{n} ∑i=1 n
- ∫ 0 π 2 \int_{0}~{\frac{\pi}{2}} ∫0 2π
- ∏ ϵ \prod_\epsilon ∏ϵ