排序:
默认
按更新时间
按访问量

python for循环显示进度

from progressbar import Percentage, ProgressBar,Bar,ETAbar = ProgressBar(widgets=[Bar('>', '[', ']'), ' ', Percentage(), ' ', ETA()],maxva...

2018-03-22 21:19:18

阅读数:218

评论数:0

numpy.concatenate 中的axis参数怎么理解

首先numpy.concatenate的官方使用说明为:https://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.concatenate.htmlnumpy.concatenate中有两个参数,一个是由被连接的数组组成的序列...

2018-02-12 19:51:17

阅读数:1358

评论数:0

如何使用ipynb文件并转化为py文件

首先使用 pip install jupyter 安装jupyter notebook。 在ipynb所在的目录打开jupyter notebook ,只需要在终端输入: jupyter notebook 在浏览器打开的jupyter即可打开并使用ipynb文件, File=》Down...

2018-02-07 13:04:27

阅读数:871

评论数:0

python中的getopt怎么理解

在看crfascnn代码的demo时看到这个语句,上网查了一下,可以参考这个博文: http://blog.csdn.net/chengxuyuanyonghu/article/details/42556885 demo中相关的代码以及我的解释如下: try: o...

2018-01-22 16:50:05

阅读数:70

评论数:0

论文翻译:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

来源:CVPR Abstract 最先进的物体检测网络依靠区域提议算法来推测物体的位置。SPPnet [1]和Fast R-CNN [2]等研究已经减少了这些检测网络的运行时间,使得区域提议计算成为一个瓶颈。在这项工作中,我们引入了一个区域提议网络(RPN),该网络与检测网络共享全图像卷积特征...

2018-01-12 09:58:29

阅读数:209

评论数:0

论文翻译:Higher Order Potentials in End-To-End Trainable Conditional Ran-dom Fields

来源:CoRR,abs,2015 Abstract        我们利用深度学习技术来解决语义分割的问题。大多数语义分割系统包括一个条件随机场(CRF)模型,以产生与图像的视觉特征一致的结构化输出。随着近期深度学习的进展,在深度神经网络中执行CRF推断以促进CRF与逐像素卷积神经网络(CNN...

2018-01-06 09:16:39

阅读数:107

评论数:0

论文翻译:Conditional Random Fields as Recurrent Neural Networks.

CVPR2015 Abstract      诸如语义分割之类的像素级标记任务在图像理解中起着核心作用。最近的方法试图利用图像识别的深度学习技术的能力来处理像素级的标记任务。这种方法的一个核心问题是深度学习技术的能力有限,以描绘视觉对象。为了解决这个问题,我们引入了一种卷积神经网络的新形式,它结...

2018-01-04 08:37:31

阅读数:179

评论数:0

论文翻译:Learning Graphical Model Parameters with Ap-proximate Marginal Inference

PAMI2013年论文 Abstract       基于似然的图形模型学习面临着计算复杂度和模型错误描述鲁棒性的限制。本文研究了直接拟合参数以最大限度地提高测量精度的方法预测的边缘,考虑到训练时间模型和推理方法。对成像问题的实验表明,基于边际化的学习在基于近似性的困难问题上比基于可能性的近似...

2018-01-03 17:19:28

阅读数:41

评论数:0

论文翻译:Neural conditional random felds

文章地址2010年 Abstract       我们提出了一个结构化预测的非线性图形模型。它结合了深度神经网络的强大功能,以马尔可夫网络的图形框架提取高级特征,产生了一个强大的可扩展的概率模型,我们将其应用于信号标记任务。 1. Introduction       本文考虑了结构化预测任务...

2018-01-02 19:26:10

阅读数:43

评论数:0

论文翻译:A Tutorial on Energy-Based Learning

文章地址LeCun经典论文 Abstract      基于能量的模型(EBM)通过将标量能量与变量的每个配置相关联来捕获变量之间的依赖关系。推论包括钳制观测变量的值,并找出使能量最小的其余变量的配置。学习包括找到一个能量函数,其中变量的观察结构的能量比不可观测的能量要低。 EBM方法为许...

2018-01-02 18:32:53

阅读数:74

评论数:0

论文翻译:Multi-camera Multi-object Tracking

Abstract       在本文中,我们提出了一种多摄像机系统下的多目标视觉跟踪流水线。对于多摄像机系统跟踪问题,跨摄像机的高效数据关联以及跨帧的数据关联变得比单摄像机系统跟踪更重要。然而,大多数多摄像机跟踪算法强调单个摄像机跨帧数据关联。因此,在我们的工作中,我们将跟踪问题建模为全局图,并...

2018-01-02 08:59:35

阅读数:397

评论数:0

论文翻译:Practical and Efficient Multi-View Matching

来源:ICCV2017 Abstract         在本文中,我们提出了一个多视图匹配问题的新颖解决方案,即给定一组噪声成对的对应关系,联合更新它们以最大化它们的一致性。 我们的方法基于频谱分解,与文献中可以找到的其他迭代技术相比是一种闭式的高效算法。 在合成和实际数据集上的实验都表明,我们...

2018-01-01 20:12:23

阅读数:85

评论数:0

论文翻译:Multi-View 3D Object Detection Network for Autonomous Driving

来源:CVPR2017 Abstract         本文针对自动驾驶场景中的高精度三维物体检测。我们提出了多视点三维网络(MV3D),这是一个感知融合框架,将LIDAR点云和RGB图像作为输入,并预测定向的3D边界框。我们用紧凑的多视图表示编码稀疏三维点云。网络由两个子网组成:一个用于三维物...

2018-01-01 16:19:13

阅读数:416

评论数:0

论文翻译:Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

来源:ICCV2017 Abstract         单个2D图像中的人物检测近年来已经得到大大改善。 然而,这一进展很少渗透到多摄像机多人追踪算法中,当场景变得非常拥挤时,其检测性能仍然严重恶化。 在本论文中,我们引入了一个新的架构,结合了卷积神经网络和条件随机场来明确地模拟这些模糊。 其中...

2018-01-01 09:25:43

阅读数:187

评论数:0

论文翻译:Multi-view People Tracking via Hierarchical Trajectory Composition

来源:CVPR2016 Abstract 本文提出了多视点对象跟踪的分层组合方法。其关键思想是自适应地利用二维和三维的多重线索,例如地面占有一致性,外观相似性,运动相干性等,这些线索在追踪行人轨迹的过程中相互补充。虽然在过去的文献中已经广泛地研究了特征联机选择,但是如何有效地调度这些提示以用于追踪...

2018-01-01 00:00:55

阅读数:78

评论数:0

AU标注辅助小程序

人生苦短,我用python~ import cv2 import os import matplotlib import matplotlib.pyplot as plt import numpy as np import shutil import csv def check_landmar...

2017-12-24 23:43:24

阅读数:146

评论数:0

读取csv文件快速返回行数

csv_reader = csv.reader(open('somefile.csv', encoding='utf-8')) # 有的文件是utf-8编码np.array(list(csv_reader)).shape[0]

2017-12-23 16:34:58

阅读数:732

评论数:1

cv2.imread()返回none怎么解决

我的原因是因为路径里面有中文路径,把中文路径去掉就可以了

2017-12-23 10:28:40

阅读数:1779

评论数:0

论文复现报告:Deep Region and Multi-label Learning for Facial Action Unit Detection

论文复现报告:Deep Region and Multi-label Learning for Facial Action UnitDetection 第一次跑caffe代码,纯属自我练习,顺便记下一点心得和发现。此次复现参考自http://blog.csdn.net/u011668104/ar...

2017-12-20 19:47:58

阅读数:570

评论数:0

如何输出python中list的维度

import numpy as np a = [[1,2],[3,4]] print(np.array(a).shape)

2017-12-18 15:36:35

阅读数:3469

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭