数据结构--图的遍历

#include<stdio.h>
#include<malloc.h>
#include<stdbool.h>

#define QUEUE_SIZE 10

int* visitedPtr;

typedef struct GraphNodeQueue{
    int* nodes;
    int front;
    int rear;
}GraphNodeQueue,*QueuePtr;

QueuePtr iniQueue()
{
    QueuePtr resultQueuePtr=(QueuePtr)malloc(sizeof(struct GraphNodeQueue));
    resultQueuePtr->nodes=(int*)malloc(QUEUE_SIZE*sizeof(int));
    resultQueuePtr->front=0;
    resultQueuePtr->rear=1;
    return resultQueuePtr;
}

bool isQueueEmpty(QueuePtr paraQueuePtr)
{
    if((paraQueuePtr->front+1)%QUEUE_SIZE==paraQueuePtr->rear)
    {
        return true;
    }
    return false;
}

void enqueue(QueuePtr paraQueuePtr,int paraNode)
{
    if((paraQueuePtr->rear+1)%QUEUE_SIZE==paraQueuePtr->front)
    {
        printf("Error,trying to enqueue %d.queue full.\r\n",paraNode);
        return;
    }
    paraQueuePtr->nodes[paraQueuePtr->rear]=paraNode;
    paraQueuePtr->rear=(paraQueuePtr->rear+1)%QUEUE_SIZE;
}

int dequeue(QueuePtr paraQueuePtr)
{
    if(isQueueEmpty(paraQueuePtr))
    {
        printf("error,empty queue\r\n");
        return -1;
    }
    paraQueuePtr->front=(paraQueuePtr->front+1)%QUEUE_SIZE;
    return paraQueuePtr->nodes[paraQueuePtr->front];
}

typedef struct Graph{
    int** connections;
    int numNodes;
}*GraphPtr;

GraphPtr intiGraph(int paraSize,int** paraData)
{
    int i,j;
    GraphPtr resultPtr=(GraphPtr)malloc(sizeof(struct Graph));
    resultPtr->numNodes=paraSize;
    resultPtr->connections=(int**)malloc(paraSize*sizeof(int*));
    for(i=0;i<paraSize;i++)
    {
        resultPtr->connections[i]=(int*)malloc(paraSize*sizeof(int));
        for(j=0;j<paraSize;j++)
        {
            resultPtr->connections[i][j]=paraData[i][j];
        }
    }
    return resultPtr; 

}

void initTranverse(GraphPtr paraGraphPtr)
{
    int i;
    visitedPtr=(int*)malloc(paraGraphPtr->numNodes* sizeof(int));
    for(i=0;i<paraGraphPtr->numNodes;i++)
    {
        visitedPtr[i]=0;
        //初始化visitedPtr数组中的每个元素为0,表示所有节点都没有被访问过。
    }
}

void depthFirstTranverse(GraphPtr paraGraphPtr,int paraNode)
{
    int i;
    visitedPtr[paraNode]=1;
    //函数将节点paraNode标记为已访问
    printf("%d\t",paraNode);
    for(i=0;i<paraGraphPtr->numNodes;i++)
    {
        if(!visitedPtr[i])
        {
            if(paraGraphPtr->connections[paraNode][i])
            //图的连接表示为paraGraphPtr -> connections[paraNode][i]
            {
                depthFirstTranverse(paraGraphPtr,i);
            }
        }
    }
}
//用于宽度优先搜索(BFS)图
//paraStart:起始节点的标号
void widthFirstTranverse(GraphPtr paraGraphPtr,int paraStart)
{
    int i,j,tempNode;
    i=0;
    QueuePtr tempQueuePtr=iniQueue();
    printf("%d\t",paraStart);
    visitedPtr[paraStart]=1;//将起始节点加入队列,并标记为已访问。
    enqueue(tempQueuePtr,paraStart);
    while(!isQueueEmpty(tempQueuePtr))
    {
        tempNode=dequeue(tempQueuePtr);
        //从队列中取出一个节点,并将其标记为已访问
        visitedPtr[tempNode]=1;
        i++;
        for(j=0;j<paraGraphPtr->numNodes;j++)
        {
            if(visitedPtr[j])
            {
                continue;
            }
            if(paraGraphPtr->connections[tempNode][j]==0)
            {
                continue;
            }
            printf("%d\t",j);
            visitedPtr[j]=1;
            enqueue(tempQueuePtr,j);
        }
    }

}

void testGraphTranverse()
{
    int i,j;
    int myGraph[5][5]={
        {0, 1, 0, 1, 0},
		{1, 0, 1, 0, 1}, 
		{0, 1, 0, 1, 1}, 
		{1, 0, 1, 0, 0}, 
		{0, 1, 1, 0, 0}};
    int** tempPtr;
    printf("Prepared graph:\r\n");
    tempPtr=(int**)malloc(5*sizeof(int*));

    for(i=0;i<5;i++)
    {
        tempPtr[i]=(int*)malloc(sizeof(int)*5);
    }

    for(i=0;i<5;i++)
    {
        for(j=0;j<5;j++)
        {
            tempPtr[i][j]=myGraph[i][j];
        }
    }
    printf("Dara ready\r\n");
    GraphPtr tempGraphPtr=intiGraph(5,tempPtr);
    printf("num nodes =%d\r\n",tempGraphPtr->numNodes);
    printf("Graph initialized\r\n");

	printf("Depth first visit:\r\n");//深度优先访问
	initTranverse(tempGraphPtr);
	depthFirstTranverse(tempGraphPtr, 4);

	printf("\r\nWidth first visit:\r\n");//宽度优先访问
	initTranverse(tempGraphPtr);
	widthFirstTranverse(tempGraphPtr, 4);

}
int main(){
	testGraphTranverse();
	return 1;
}//Of main

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值