1、逻辑回归算法介绍
逻辑回归(Logistic Regression)是一种广义线性回归分析模型。虽然名字里带有“回归”两字,但其实是分类模型,常用于二分类。既然逻辑回归模型是分类模型,为什么名字里会含有“回归”二字呢?这是因为其算法原理同样涉及线性回归模型中的线性回归方程。线性回归方程是用于预测连续变量的,其y的取值范围为(−∞,+∞),而逻辑回归模型是用于预测类别的,例如,用逻辑回归模型预测一个人是否会违约、客户是否会流失,在本质上预测的是一个人是否违约、是否流失的概率,而概率的取值范围是0~1,因此不能直接用线性回归方程来预测概率。
☀什么是连续型变量?
连续型变量是指在一定范围内可以取无限多个可能值的数据类型。这些值通常可以是任意小数,且在理论上没有间隔。例如,时间、温度、长度、重量等都是典型的连续型数据,因为它们可以在某个区间内无限细分。
关键特点:
①无限可分:在任意两个值之间,存在无数个中间值。
②小数可能性:可以精确到小数点后多位(如身高1.75米、温度36.8°C)。
③测量精度:实际应用中可能受限于测量工具,但理论上连续。
连续型与离散型数值的对比 |
||
特征 |
连续型数值 |
离散型数值 |
取值范围 |
无限细分(如0.1, |