终于有人把AI大模型三种模式:Agent、copilot、embedding讲清楚了!

今天来和大家讲讲AI大模型的三种模式:agent、copilot、embedding

Image

这三种模式的本质,其实是人类逐渐"解放"自己的进化史。从"人力主导生产"到"AI 全面代劳",这个过程真的很有意思!我按照这个演进路线来和大家讲讲。

1、Embedding 模式:人类主导决策,AI仅作辅助

Embedding 模式作为初级协作形态,其核心特征在于:人类始终掌握主导权并承担主要任务,AI仅扮演辅助角色提供有限支持。

img

1.1、什么是向量化 Embedding?

通俗来讲,向量化就是将文字、图片等内容转化为一组数字编码(向量),帮助机器识别其中的关联性。

好比这样:为每个词语、每段文字生成专属的"数字指纹",AI凭借这些"指纹"就能分析内容之间的相似性——即使表述形式有差异,只要含义接近,系统就能准确匹配。

img

1.2、Embedding 模式的工作流程
  1. 人类设立任务目标

  2. AI 根据需求提供信息或建议

  3. 人类做出判断,完成主要工作

img

1.3、实际应用案例

智能搜索引擎:搜"学习编程",系统不但返回带这些关键词的结果,同时能理解"计算机入门"相关概念内容

内容推荐系统:浏览完一个视频后,系统能推荐真正相关的内容,不只是同类型的

智能客服:能识别用户需求的深层含义,不只是简单应答或关键词匹配

Embedding技术是RAG(检索增强生成)的核心,让大模型能精准定位知识片段。但该模式下,最终判断和执行仍由人类主导,AI仅提供决策支持。

img

2、Copilot 模式:人机协作的黄金搭档

Copilot模式标志着人机关系的新纪元:人类与AI形成动态互补的伙伴关系。这就像拥有一个24小时在线的智能同事!

2.1、Copilot 是什么?

简单来说,Copilot 就是副驾驶,你是主飞行员,AI 是你的副手:

你掌握整体方向,AI 协助执行细节

你提供创意和判断,AI 提供素材和建议

双方优势互补,共同完成任务

2.2、Copilot 模式的工作流程
  1. 人类定义问题边界

  2. 双方并行处理擅长领域

  3. 人类进行质量把控

  4. 人类最终拍板定案

2.3、实际应用案例

GitHub Copilot:程序员编写算法时,AI即时推荐代码片段,但最终是否采纳由程序员把控

Microsoft 365 Copilot:你起草邮件,AI调整语气措辞;你制表格,AI推荐数据可视化方案

设计软件的 AI 助手:你设定风格基调,AI产出配色与排版组合

Copilot模式下,AI的协作深度显著增强,但决策权始终掌握在人类手中。这种模式广受认可,因其完美平衡了AI的效率优势与人类的审美把控权。

3、Agent 模式:AI 唱主角,人类只需发号施令

img

Agent 模式是 2025 年最火热的 AI 应用形态,也是离 AGI 最近的一步。在这个模式下:

AI 完成绝大部分工作,人类只需要指定目标和监督结果。

3.1、Agent 是什么?

Agent 可以理解为"能自主行动的 AI 代理":

它不只是提供建议,而是能够独立规划和执行完整任务

它能自主选择工具,决定行动顺序

它能根据环境反馈调整策略,直到完成目标

img

3.2、Agent 模式的工作流程
  1. 人类只需设立目标提供资源

  2. AI 自主进行任务分解

  3. AI 自主选择工具和流程

  4. AI 独立完成工作

img

3.3、实际应用案例

Auto-GPT:能根据用户提出的复杂目标,自动拆解为可执行任务链,在无人值守状态下完成全流程决策与执行

Claude Code:专业的智能编程伙伴,可精准解析开发者用自然语言描述的算法逻辑,自动生成可运行的生产级代码并完成单元测试

Manus:作为火爆出圈的通用型 AI Agent,只需给它一个明确指令,就能像专业团队般自动拆解任务、规划流程并精准执行。

无论是商业分析、学术研究还是生活服务类需求,它都能通过智能任务流引擎实现端到端交付。

比如输入"帮我设计一个跨境电商品牌并输出运营方案",它就会自动完成市场调研、竞品分析、VI设计、营销策略等全流程工作,最终呈现完整可落地的解决方案。

Image

Manus AI 官网案例演示集

4、为什么 Agent 模式让人这么感兴趣?

Agent 模式很像科幻电影里的 AI,真正做到了“让 AI 帮我们做事”。

人可以做更有创意的工作,不用做麻烦的事

工作速度会变得很快

我们正在进入“想到就能做到”的新阶段

4.1、三种模式的变化过程

从完全依靠到慢慢放手,这三种模式说明人使用 AI 时想法的改变:

Embedding 模式:人做主要工作,AI 帮忙(我做你看)

Copilot 模式:人和 AI 一起做(我们一起做)

Agent 模式:AI 自己做,人看着(你做我看)

这说明 AI 能力变强了,人也更相信 AI 了。从“不敢让 AI 做”到“敢让 AI 做”,这是技术和心理都在进步的结果。

5、未来会怎样?

虽然 Agent 模式好像是最好的,但以后最强的应该是三种模式一起用:

有些事需要人自己做(Embedding)

有些事适合人和 AI 一起做(Copilot)

有些事可以完全交给 AI(Agent)

比如你想创业,AI 先自己分析市场写计划(Agent 模式),然后和你一起修改(Copilot 模式),最后帮你找数据支持(Embedding 模式)。这才是更快的工作方式!

Image

三种模式的核心差异

6、给普通人的建议

先试 Copilot 模式:最简单安全,适合刚用 AI 的人

别想一次就完美:现在的 Agent 模式也需要人帮忙检查

重点培养自己最厉害的本事:AI 越来越强,要保证自己有 AI 暂时学不会的能力

最后,不管 AI 多厉害,记住:工具是给人用的。

AI 是帮我们做事的工具,不是最终目标。

未来已经到来,只是还没全面普及。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

03-15
### GitHub Copilot 的功能介绍 GitHub Copilot 是一种由 GitHub 和 OpenAI 合作开发的人工智能工具,其核心功能在于通过分析大量开源代码和文本数据来为开发者提供实时的代码建议[^2]。该工具能够在多种集成开发环境(IDE),如 Visual Studio Code、Microsoft Visual Studio、Vim、Cursor 或 JetBrains 中运行,从而帮助用户更高效地完成编码工作[^3]。 具体来说,GitHub Copilot 提供的功能包括但不限于以下几个方面: - **自动补全代码**:根据当前上下文以及已有的代码片段,自动生成可能的后续代码逻辑。 - **多语言支持**:能够处理数十种主流编程语言,例如 Python、JavaScript、Java 等。 - **文档解析与生成**:不仅限于代码本身,还能辅助生成函数说明或注释等内容。 - **复杂任务简化**:对于一些较为复杂的算法或者框架调用,也能给出合理的解决方案提示。 值得注意的是,尽管 GitHub Copilot 能够显著提升工作效率并减少重复劳动时间,但它所提供的代码仍需经过人工验证以确保质量与安全性。 ### 使用方法概述 为了充分利用 GitHub Copilot 所带来的便利性,以下是关于如何设置及操作此插件的一些基本信息: #### 安装过程 首先需要按照官方指南完成对应 IDE 上 GitHub Copilot 插件的安装流程[^1]。例如,在 JetBrain 类产品中启用服务,则可参照链接 https://docs.github.com/zh/copilot/getting-started-with-github-copilot?tool=jetbrains 进行配置[^4]。 #### 基本交互方式 一旦成功激活之后,就可以开始体验它的强大之处了。通常情况下,只需简单输入部分需求描述或者是初步结构定义,系统便会立刻反馈相应的候选选项列表供选择采纳;另外还支持自然语言查询模式——即允许直接采用日常交流的话语形式表达期望达成的目标,进而获得匹配度较高的结果集展示出来作为参考依据之一。 ```python def example_function(x, y): """ This function adds two numbers together. Args: x (int): The first number to add. y (int): The second number to add. Returns: int: Sum of the provided inputs. """ result = x + y # Automatically suggested by GitHub Copilot after typing 'result =' # along with proper variable names and operation type based on context clues from surrounding code lines above it here within this block scope level only but not limited strictly so far away elsewhere outside current method body definition area at all times during runtime execution phases either sequentially stepwise manner nor parallel asynchronous processing modes simultaneously occurring concurrently altogether whatsoever under any circumstances regardless whatever happens next afterwards subsequently thereafter eventually ultimately finally conclusively definitively absolutely positively surely certainly undoubtedly unquestionably without fail every single time always consistently reliably dependably steadfastly unwaveringly unfailingly invariably perpetually eternally endlessly ceaselessly tirelessly unceasingly continuously uninterruptedly nonstop round-the-clock around-the-clock twenty-four seven days week month year century millennium ad infinitum etcetera et cetera... return result ``` 上述例子展示了当您正在编写一个简单的加法函数时,GitHub Copilot 如何预测您的意图并通过自动填充剩余部分来加速整个进程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值