题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2152
2152: 聪聪可可
Time Limit: 3 Sec Memory Limit: 259 MB
Submit: 1701 Solved: 884
[Submit][Status][Discuss]
Description
聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。
Input
输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。
Output
以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。
Sample Input
5
1 2 1
1 3 2
1 4 1
2 5 3
Sample Output
13/25
【样例说明】
13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。
【数据规模】
对于100%的数据,n<=20000。
思路:
明显的树上的点分治,利用两个数组g[]表示搜当前根的子树时,当前子树之前的路径长x的方案数,ff表示当前子树路径长x方案数
*ans+=g[j]*ff[(3-j)%3]*2; //注意(1,1)合法,(1,2)(2,1)算两种;
代码:
#include<iostream>
#include<stdio.h>
#include<vector>
#include<string.h>
#define N 20005
using namespace std;
int g[3];
int ff[3];
int n,rt;
int dis[N];
struct node{
int x,y;
node(int xx,int yy)
{
x=xx,y=yy;
}node(){}
};
vector<node> lin[N];
long long ans1,ans2;
int size;
int f[N],sz[N];
int vis[N];
void getrt(int x,int fa)
{
sz[x]=1;
f[x]=0;
for(int i=0;i<lin[x].size();i++)
{
int u=lin[x][i].x;
if(u==fa||vis[u]) continue;
getrt(u,x);
sz[x]+=sz[u];
f[x]=max(f[x],sz[u]);
}
f[x]=max(f[x],size-sz[x]);
if(f[x]<f[rt]) rt=x;
}
void dfs(int x,int fa)
{
sz[x]=1;
ff[dis[x]]++;
for(int i=0;i<lin[x].size();i++)
{
int u=lin[x][i].x;
if(vis[u]||u==fa) continue;
dis[u]=(dis[x]+lin[x][i].y)%3;
dfs(u,x);
sz[x]+=sz[u];
}
}
void cal(int x)
{
g[0]=1;
ans1+=1;
for(int i=0;i<lin[x].size();i++)
{
int u=lin[x][i].x;
dis[u]=lin[x][i].y;
if(vis[u]) continue;
dfs(u,x);
for(int j=0;j<3;j++)
ans1+=g[j]*ff[(3-j)%3]*2;
for(int j=0;j<3;j++)
{
g[j]+=ff[j];
ff[j]=0;
}
}
for(int i=0;i<3;i++) g[i]=0;
}
void solve(int x)
{
vis[x]=1;
cal(x);
for(int i=0;i<lin[x].size();i++)
{
int u=lin[x][i].x;
if(vis[u]) continue;
f[0]=size=sz[u];
getrt(u,rt=0);
solve(rt);
}
}
int aa,bb,cc;
long long gcd(long long a,long long b)
{
if(b==0) return a;
return gcd(b,a%b);
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d%d%d",&aa,&bb,&cc);
cc%=3;
lin[aa].push_back(node(bb,cc));
lin[bb].push_back(node(aa,cc));
}
f[0]=size=n;
getrt(1,rt=0);
solve(1);
ans2=n*n;
long long d=gcd(ans1,ans2);
ans1/=d;
ans2/=d;
printf("%lld",ans1);
printf("/");
printf("%lld",ans2);
}