[bzoj 2152] 聪聪可可 树上点分治

题目http://www.lydsy.com/JudgeOnline/problem.php?id=2152

2152: 聪聪可可
Time Limit: 3 Sec Memory Limit: 259 MB
Submit: 1701 Solved: 884
[Submit][Status][Discuss]
Description

聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。
Input

输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。
Output

以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。
Sample Input
5

1 2 1

1 3 2

1 4 1

2 5 3

Sample Output
13/25

【样例说明】

13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。

【数据规模】

对于100%的数据,n<=20000。

思路
明显的树上的点分治,利用两个数组g[]表示搜当前根的子树时,当前子树之前的路径长x的方案数,ff表示当前子树路径长x方案数
*ans+=g[j]*ff[(3-j)%3]*2; //注意(1,1)合法,(1,2)(2,1)算两种;

代码

#include<iostream>
#include<stdio.h>
#include<vector>
#include<string.h>
#define N 20005
using namespace std;
int g[3];
int ff[3];
int n,rt;
int dis[N];
struct node{
    int x,y;
    node(int xx,int yy)
    {
        x=xx,y=yy;
    }node(){}
};
vector<node> lin[N];
long long ans1,ans2;
int size;
int f[N],sz[N];
int vis[N];
void getrt(int x,int fa)
{
    sz[x]=1;
    f[x]=0;
    for(int i=0;i<lin[x].size();i++)
    {
        int u=lin[x][i].x;
        if(u==fa||vis[u]) continue;
        getrt(u,x);
        sz[x]+=sz[u];
        f[x]=max(f[x],sz[u]);
    }
    f[x]=max(f[x],size-sz[x]);
    if(f[x]<f[rt]) rt=x;
}
void dfs(int x,int fa)
{
    sz[x]=1;
    ff[dis[x]]++;
    for(int i=0;i<lin[x].size();i++)
    {
        int u=lin[x][i].x;
        if(vis[u]||u==fa) continue;
        dis[u]=(dis[x]+lin[x][i].y)%3;
        dfs(u,x);
        sz[x]+=sz[u];
    }
}
void cal(int x)
{
    g[0]=1;
    ans1+=1;

    for(int i=0;i<lin[x].size();i++)
    {
        int u=lin[x][i].x;
        dis[u]=lin[x][i].y;
        if(vis[u]) continue;
        dfs(u,x);
        for(int j=0;j<3;j++)
        ans1+=g[j]*ff[(3-j)%3]*2; 

        for(int j=0;j<3;j++)
        {
            g[j]+=ff[j];
            ff[j]=0;
        }
    }
    for(int i=0;i<3;i++)  g[i]=0;

}
void solve(int x)
{
    vis[x]=1;
    cal(x);
    for(int i=0;i<lin[x].size();i++)
    {
        int u=lin[x][i].x;
        if(vis[u]) continue;
        f[0]=size=sz[u];
        getrt(u,rt=0);
        solve(rt);
    }

}
int aa,bb,cc;
long long gcd(long long a,long long b)
{
    if(b==0) return a;
    return gcd(b,a%b);
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<n;i++)
    {
        scanf("%d%d%d",&aa,&bb,&cc);
        cc%=3;
        lin[aa].push_back(node(bb,cc));
        lin[bb].push_back(node(aa,cc));
    }
    f[0]=size=n;
    getrt(1,rt=0);
    solve(1);
    ans2=n*n;
    long long d=gcd(ans1,ans2);
    ans1/=d;
    ans2/=d;
    printf("%lld",ans1);
    printf("/");
    printf("%lld",ans2);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值