泰勒综合平面阵的电流分布与阵因子方向图MATLAB仿真
阵列天线的综合问题是其分析的逆问题,即是在预先给定辐射特性(如方向图形状、主瓣宽度、副瓣电平、方向性系数)的情况下,综合出阵列单元数、间距、激励幅度和相位。阵列天线的综合就是阵列天线的设计问题。
道尔夫-切比雪夫综合法
道尔夫-切比雪夫综合法是一种可控制副瓣电平的阵列天线综合方法,适合单元数目N≤13的阵列,具有以下特点:
(1) 等副瓣电平;
(2) 在相同副瓣电平和相同阵列长度下主瓣最窄,为最佳阵列;
(3) 单元数多时,阵列两端单元激励幅度跳变大,使馈电困难。
其阵因子函数为:
当单元数目为奇数即N=2M+1时,阵因子为:
当单元数目为偶数即N=2M时,阵因子为:
泰勒综合法
采用泰勒综合法设计的泰勒阵列,其方向图只是靠近主瓣某个区域内的副瓣电平接近相等,随后单调地减小,有利于提高天线方向性,适合单元数目N>13的阵列。
均匀线阵方向图
其方向图函数为:
该函数的含义是:把基本函数的前n −1个零点用改造的理想空间因子的零点取代,而第n 个以后的零点保持为基本函数的零点。
其中,零点位置为:
理想空间因子:
当 u=0 为最大值时,
均匀线阵电流分布幅度
则离散化后泰勒阵列各单元的电流分布幅度可表示为:
式中:
泰勒分布平面阵
矩形栅格的矩形平面阵列,如果其馈电分布是可分离型的,则该平面阵列的阵因子方向图就是沿 x 和 y 方向排列的直线阵列阵因子方向图的乘积。
其电流分布幅度为:
阵因子方向图为:
源代码:https://download.csdn.net/download/ALiTing_/86912120