【数据结构与算法】 FIND!流程图绘制工具

本文对比了使用Visio、ProcessOn.com及draw.io等工具绘制流程图的特点。Visio提供了无限扩展画布及自动对齐等功能;ProcessOn.com支持云存储且基于HTML5;draw.io作为一款免费的在线工具,不仅功能强大还支持跨平台使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

老师推荐了Visio,确实相比Word\PPT 画流程图,Visio有许多独特的优点。

例如:

visio的画板可也以无限扩大,你超出了原来的范围,它就自动扩展。

可以自动对齐!!!

……


又发现了一个很不错的在线画图工具(觉得是个不错的收获):云存储+HTML5下的ProcessOn.com

http://processon.com/


以及,draw.io,网页版跨平台无需安装,功能强大超出想像,免费,数据保存在云端。       

### SCE-UA 自动优化算法的结构流程 SCE-UA 是一种基于分层竞争进化策略的全局优化算法,最初由 Duan 等人在 1992 年提出并应用于水文学领域中的模型参数校准问题。该算法通过将种群划分为若干子群体,并让这些子群体分别采用不同的搜索策略来实现高效的全局优化。 #### 算法的主要特点 SCE-UA 的核心思想在于结合了多种优化机制,包括随机搜索、局部最优探索以及全局信息共享等方法。其主要特点是能够有效处理高维复杂函数空间中的多模态优化问题[^2]。 #### SCE-UA 的基本结构 SCE-UA 将整个种群分成多个子群体(subgroups),每个子群体独立执行某种特定类型的优化操作。具体来说,SCE-UA 包含以下几个组成部分: 1. **初始种群生成** 随机初始化一组候选解作为起始点集合。 2. **子群体划分** 初始种群被均匀分配到若干个子群体中,各子群体之间相互独立运行。 3. **复合演化过程** 每个子群体内部按照一定规则进行迭代更新,主要包括两种模式: - 局部最陡下降法 (Complex Evolution, CE),用于精化当前区域内较优解; - 随机扰动机制 (Shuffled Complex Evolution, SCE),促进不同区域间的信息交流以避免陷入局部极值。 4. **重新组合阶段** 完成一轮单独演算之后,所有个体被打乱重组形成新的整体种群;随后再次分割为下一周期使用的各个子集继续循环直至满足终止条件为止。 #### 流程描述 以下是 SCE-UA 的典型工作流概述: 1. 初始化参数设置:定义目标函数范围、最大评价次数上限以及其他必要配置项。 2. 创建原始样本池并通过简单采样方式填充至规定规模大小Npop。 3. 把上述成员平均分布给M组互相隔离的小团队各自开展局部改进活动。 * 对于每一个小组而言,在每一次迭代过程中都会挑选出表现最好的几个实体组成临时综合体(complex)进而实施单纯形法调整动作或者引入额外变异因素制造新鲜血液注入体系当中去。 4. 当达到预定轮次界限时停止单方面努力转而进入跨部门协作环节——即将现存全部成果混合起来再依据适应度高低顺序排列选取前头部分构成下一代基础素材库供后续利用。 5. 反复重复前述步骤直到最终收敛于满意解答位置结束程序运作。 #### 关于示意图 虽然这里无法直接提供具体的图形文件链接地址,但是可以给出绘制此类图表所需的关键要素提示如下所示: - 显示总体框架布局图谱标明各级组件之间的逻辑关联关系; - 单独展示某个细分模块内部细节构造比如complex evolution的具体实施方案等等; - 时间轴方向演变轨迹描绘清楚每一步骤对应的实际物理意义及其作用效果. 希望以上内容可以帮助理解SCE-UA的工作原理! 如果需要更直观的表现形式建议查阅相关学术论文资料获取高质量插画资源支持学习研究需求[^3]. ```python def sce_ua_optimization(): """ A simplified pseudo-code representation of the SCE-UA optimization algorithm. This function outlines key steps but does not include actual implementation details. """ import random def initialize_population(size): population = [] for _ in range(size): individual = generate_random_individual() population.append(individual) return population def divide_into_subgroups(population, num_groups): subgroup_size = len(population) // num_groups subgroups = [population[i:i + subgroup_size] for i in range(0, len(population), subgroup_size)] return subgroups def complex_evolution(subgroup): best_solution = find_best_in_group(subgroup) new_solutions = apply_local_search(best_solution) return new_solutions def shuffled_complex_evolution(all_solutions): mixed_population = shuffle_and_recombine(all_solutions) next_generation = select_top_performers(mixed_population) return next_generation # Main loop max_iterations = 100 current_iteration = 0 population = initialize_population(50) while current_iteration < max_iterations: subgroups = divide_into_subgroups(population, 5) evolved_subgroups = [] for group in subgroups: improved_group = complex_evolution(group) evolved_subgroups.extend(improved_group) population = shuffled_complex_evolution(evolved_subgroups) current_iteration += 1 optimal_solution = find_global_best(population) return optimal_solution ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值