1、函数对象的内存底层分析(理解)
在Python中一切都是对象,在执行def定义函数后,系统就创建了相应的函数。
以上面程序为例,代码在执行def定义的函数的时候,系统会创建对象,并通过print_star这个变量进行引用:
我们执行“c=print_star”后,显然将 print_star 变量的值赋给了变量 c,内存图就会变成
我们可以看出变量 c 和 print_star 都是指向了同一个函数对象。因此,执行 c(3)和执
行 print_star(3)的效果是完全一致的。 **Python 中,圆括号意味着调用函数。**在没有圆括
号的情况下,Python会把函数当作普通对象。
2、变量的作用域(全局变量和局部变量)
全局变量:
- 在函数和类定义之外声明的变量。作用域为定义的模块,从定义位置开始直到模块结束。
- 全局变量降低了函数的通用性和可读性。应尽量避免全局变量的使用。
- 全局变量一般做常量使用。
- 函数内要改变全局变量的值,使用 global 声明一下。
局部变量:
- 在函数体中(包含形式参数)声明的变量。
- 局部变量的引用比全局变量快,优先考虑使用。
- 如果局部变量和全局变量同名,则在函数内隐藏全局变量,只使用同名的局部变量
3、参数的传递
函数的参数传递本质上就是:从实参到形参的赋值操作。 Python 中“一切皆对象”,所有的赋值操作都是“引用的赋值”。所以,Python 中参数的传递都是“引用传递”,不是“值传递”。
可变对象:字典,列表,集合,自定义对象等
不可变对象:数字,字符串,元组,function等
传递不可变对象的引用
传递参数是不可变对象(例如:int、float、字符串、元组、布尔值),实际传递的还是对
象的引用。在”赋值操作”时,由于不可变对象无法修改,系统会新创建一个对象。
显然,通过 id 值我们可以看到 n 和 a 一开始是同一个对象。给 n 赋值后,n 是新的对象。
4、浅拷贝与深拷贝(根据两幅图来更好的理解)
浅拷贝
# 测试浅拷贝和深拷贝
import copy
def testCopy():
''' 测试浅拷贝 '''
a = [10, 20, [5, 6]]
b = copy.copy(a)
print("a", a)
print("b", b)
b.append(30)
b[2].append(7)
print("浅拷贝......")
print("a", a)
print("b", b)
testCopy()
测试如图:
内部原理图:
如上图所示 浅拷贝只拷贝了本身的地址,在对于拷贝之后的部分数据进行操作时,还是要根据地址回到复制之前的数据进行操作。
深拷贝
def testDeepCopy():
'''测试深拷贝'''
a = [10, 20, [5, 6]]
b = copy.deepcopy(a)
print("a", a)
print("b", b)
b.append(30)
b[2].append(7)
print("深拷贝......")
print("a", a)
print("b", b)
testDeepCopy()
测试如图:
内部原理图:
由图可见,深拷贝是全部复制。
5、传递不可变对象包含的子对象是可变的情况(看图理解)
# 传递不可变对象时。不可变对象里面包含的子对象是可变的。则方法内修改了这个可变对象,源对象也发生了变化。
a = (10,20,[5,6])
print("a:", id(a))
def test01(m):
print("m:", id(m))
m[2][0] = 888
print(m)
print("m:", id(m))
test01(a)
print(a)
测试结果图:
内部原理图:
6、参数的五种类型
(1)位置参数
定义:函数调用时,实参默认按位置顺序传递,需要个数和形参匹配。
举例:
(2)默认值参数
定义:我们可以为某些参数设置默认值,这样这些参数在传递时就是可选的。称为“默认值参数”。默认值参数放到位置参数后面。
举例:
(3)命名参数
定义:以按照形参的名称传递参数,称为“命名参数”,也称“关键字参数”。
举例:
(4)可变参数
定义:**可变参数指的是“可变数量的参数”。**分两种情况:
**1. *param(一个星号),将多个参数收集到一个“元组”对象中。
2. param(两个星号),将多个参数收集到一个“字典”对象中。
举例:
(5)强制命名参数
定义:在带星号的“可变参数”后面增加新的参数,必须在调用的时候“强制命名参数”。
举例:
7、lambda表达式和匿名函数
定义:lambda 表达式可以用来声明匿名函数。lambda 函数是一种简单的、在同一行中定义函数的方法。lambda 函数实际生成了一个函数对象。
lambda 表达式只允许包含一个表达式,不能包含复杂语句,该表达式的计算结果就是函数
的返回值。
基本语法:
lambda arg1, arg2, arg3… : <表达式>
arg1/arg2/arg3 为函数的参数。<表达式>相当于函数体。运算结果是:表达式的运算结果。
举例;
8、eval()函数
功能:将字符串 str 当成有效的表达式来求值并返回计算结果。
语法: eval(source[, globals [, locals]]) —> value
参数:
source:一个 Python 表达式或函数 compile()返回的代码对象
globals:可选。必须是 dictionary
locals:可选。任意映射对象
举例:
9、递归函数
定义:递归函数指的是:**自己调用自己的函数,在函数体内部直接或间接的自己调用自己。**递归类似于大家中学数学学习过的“数学归纳法”。 每个递归函数必须包含两个部分:
1. 终止条件
表示递归什么时候结束。一般用于返回值,不再调用自己。
2. 递归步骤
把第 n 步的值和第 n-1 步相关联
举例:
# 递归函数 求n的阶乘
def factorial(n):
if n == 1:
return 1
else:
return n * factorial(n-1)
ss = int(input("请输入一个整数:"))
result = factorial(ss)
print("结果为:{0}".format(result))
测试结果为:
递归调用过程以及每次递归调用的返回值流程图如下图所示: