广东省专升本高数考点

2015-20212022(新增)2023(新增)
一、函数与极限

函数、数列极限、函数极限、

无穷小与无穷大、极限运算法则、

极限存在准则、两个重要极限、

无穷小的比较、函数的连续性与间断点、

连续函数的运算、初等函数的连续性、

闭区间上连续函数的性质 

映射与函数、

数列极限、函数极限、

无穷小与无穷大、极限运算法则、

极限存在准则、两个重要极限、

无穷小的比较、函数的连续性与间断点、

连续函数的运算、初等函数的连续性、

闭区间上连续函数的性质

映射与函数、

数列极限、函数极限、

无穷小与无穷大、极限运算法则、

极限存在准则、两个重要极限、

无穷小的比较、函数的连续性与间断点、

连续函数的运算、初等函数的连续性、

闭区间上连续函数的性质

二、导数与微分导数概念、函数的求导法则、高阶导数、隐函数及由参数方程所确定的函数导数、函数微分导数概念、函数的求导法则、高阶导数、隐函数及由参数方程所确定的函数导数、函数微分、相关变化率导数概念、函数的求导法则、高阶导数、隐函数及由参数方程所确定的函数导数、函数微分、相关变化率
三、微分中值定理与导数应用微分中值定理、洛必达法则、函数的单调性与曲线的凹凸性、函数的极值和最值、函数的水平渐近线微分中值定理、洛必达法则、函数的单调性与曲线的凹凸性、函数的极值和最值、函数的水平渐近线、泰勒公式、函数图形的描绘、曲率、方程的近似解微分中值定理、洛必达法则、函数的单调性与曲线的凹凸性、函数的极值和最值、函数的水平渐近线、泰勒公式、函数图形的描绘、曲率、方程的近似解
四、不定积分不定积分的概念和性质、换元积分法、分部积分法、一些简单有力函数的积分不定积分的概念和性质、换元积分法、分部积分法、一些简单有力函数的积分、积分表的使用不定积分的概念和性质、换元积分法、分部积分法、一些简单有力函数的积分、积分表的使用
五、定积分定积分的概念和性质、微积分基本公式、定积分的换元法和分部积分法、反常积分定积分的概念和性质、微积分基本公式、定积分的换元法和分部积分法、反常积分定积分的概念和性质、微积分基本公式、定积分的换元法和分部积分法、反常积分
六、定积分的应用定积分在几何学上的应用定积分的元素法、定积分在几何学上的应用、定积分在物理学上的应用定积分的元素法、定积分在几何学上的应用、定积分在物理学上的应用
七、微分方程微分方程的基本概念、可分离变量的微分方程、一阶线性微分方程、常系数齐次线性微分方程微分方程的基本概念、可分离变量的微分方程、一阶线性微分方程、常系数齐次线性微分方程微分方程的基本概念、可分离变量的微分方程、一阶线性微分方程、常系数齐次线性微分方程、齐次方程、可降阶的高阶微分方程、高阶线性微分方程、常系数非齐次线性微分方程
八、向量代数与空间解析几何向量及其线性运算、数量积、向量积、平面及其方程、空间直线及其方程、曲线及其方程、空间曲线及其方程
九、多元函数微分法及其应用多元函数的基本概念、偏导数、全微分、多元复合函数的求导法则、隐函数的求导公式多元函数的基本概念、偏导数、全微分、多元复合函数的求导法则、隐函数的求导公式多元函数的基本概念、偏导数、全微分、多元复合函数的求导法则、隐函数的求导公式、多元函数微分学的几何应用、方向导数与梯度、多元函数的极值及其求法
十、重积分二重积分的概念和性质、二重积分的计算法二重积分的概念和性质、二重积分的计算法、三重积分、重积分的应用二重积分的概念和性质、二重积分的计算法、三重积分、重积分的应用
十一、曲线积分与曲面积分对弧长的曲线积分、对坐标的曲线积分、格林公式及其应用、对面积的曲面积分、对坐标的曲面积分、高斯公式、斯托克斯公式
十二、无穷级数常数项级数的概念和性质、常数项级数的审敛法常数项级数的概念和性质、常数项级数的审敛法常数项级数的概念和性质、常数项级数的审敛法、幂级数、函数展开成幂级数、函数的幂级数展开式的应用、傅里叶级数、一般周期函数的傅里叶级数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木子斤欠木同

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值