在数字经济时代,产业带数据是企业洞察市场趋势、优化供应链的关键依据。1688 平台汇聚了众多产业带的商品及供应商信息,通过开发 API 接口采集这些数据并进行实时解析,能够帮助企业精准把握行业动态。本文将详细阐述基于 1688 API 的产业带数据采集方案,涵盖从接口开发到数据解析的全流程,并提供相应代码示例。
一、1688 API 接口分析与准备
(一)接口调研与权限获取
1688 提供了丰富的 API 接口,针对产业带数据采集,我们需要重点关注商品搜索、商品详情、供应商信息等相关接口,如alibaba.product.search用于获取商品列表数据,alibaba.product.get可获取单个商品详情,alibaba.supplier.get能获取供应商详细信息。在使用这些接口前,开发者需在 1688 开放平台完成注册,提交企业或个人相关资料,申请开发者权限。审核通过后,会获得 Api Key 和 Api Secret,这两个密钥用于后续接口请求的签名认证,以确保接口调用的合法性。
(二)接口文档研读
仔细研读 1688 接口文档是开发的基础。文档中详细说明了每个接口的请求方式(GET 或 POST)、请求参数、响应格式以及调用频率限制等内容。以alibaba.product.search接口为例,请求参数包括app_key、keywords(搜索关键词,可用于指定产业带相关商品)、page_no(页码)、page_size(每页数量)等。响应数据通常以 JSON 格式返回,包含商品列表、总数量等信息。开发者需根据文档要求,合理构造请求参数,并对响应数据进行正确解析。
二、开发环境搭建
本次开发采用 Python 语言,结合常用的第三方库来实现数据采集与解析功能。首先,确保本地已安装 Python 环境,推荐使用 Python 3.8 及以上版本。然后,通过以下命令安装所需的第三方库:
pip install requests
pip install pandas
pip install jsonpath
pip install redis
requests库用于发送 HTTP 请求,获取 API 接口返回的数据;pandas库用于数据处理和存储;jsonpath库可方便地从 JSON 格式数据中提取指定字段;redis库用于搭建数据缓存机制,提高数据访问效率。
三、代码实现数据采集与解析
(一)接口签名函数
import hashlib
import urllib.parse
import time
def generate_sign(params, app_secret):
"""
生成接口签名
:param params: 请求参数
:param app_secret: 应用密钥
:return: 签名结果
"""
sorted_params = sorted(params.items(), key=lambda x: x[0])
param_str = ""
for key, value in sorted_params:
param_str += key + str(value)
param_str += app_secret
sign = hashlib.md5(param_str.encode('utf-8')).hexdigest().upper()
return sign
该函数按照 1688 开放平台的签名规则,对请求参数进行排序、拼接,然后使用 MD5 加密算法生成签名,确保接口请求的安全性。
(二)商品列表数据采集函数
import requests
def get_product_list(app_key, app_secret, keywords, page_no=1, page_size=50):
"""
获取商品列表数据
:param app_key: 应用Key
:param app_secret: 应用Secret
:param keywords: 搜索关键词
:param page_no: 页码
:param page_size: 每页数量
:return: 商品列表数据(字典形式)
"""
url = "https://gw.api.1688.com/router/json"
params = {
"method": "alibaba.product.search",
"app_key": app_key,
"keywords": keywords,
"page_no": page_no,
"page_size": page_size,
"timestamp": time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()),
"format": "json"
}
sign = generate_sign(params, app_secret)
params["sign"] = sign
try:
response = requests.get(url, params=params)
response.raise_for_status()
data = response.json()
return data
except requests.exceptions.RequestException as e:
print(f"请求出错: {e}")
return None
此函数通过构造请求参数,调用签名函数生成签名,发送 GET 请求获取商品列表数据,并对响应进行处理。若请求成功,返回解析后的 JSON 数据;若失败,打印错误信息并返回None。
(三)商品详情数据采集函数
def get_product_detail(app_key, app_secret, product_id):
"""
获取单个商品详情数据
:param app_key: 应用Key
:param app_secret: 应用Secret
:param product_id: 商品ID
:return: 商品详情数据(字典形式)
"""
url = "https://gw.api.1688.com/router/json"
params = {
"method": "alibaba.product.get",
"app_key": app_key,
"product_id": product_id,
"timestamp": time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()),
"format": "json"
}
sign = generate_sign(params, app_secret)
params["sign"] = sign
try:
response = requests.get(url, params=params)
response.raise_for_status()
data = response.json()
return data
except requests.exceptions.RequestException as e:
print(f"请求出错: {e}")
return None
该函数用于获取单个商品的详情数据,逻辑与商品列表数据采集函数类似,根据商品 ID 构造请求并获取数据。
(四)数据解析与整理
import jsonpath
import pandas as pd
def parse_product_list(data):
"""
解析商品列表数据
:param data: 商品列表原始数据
:return: 解析后的DataFrame
"""
product_list = jsonpath.jsonpath(data, "$.result.products.product")
if product_list:
result = []
for product in product_list:
item = {
"product_id": product.get("productId"),
"product_name": product.get("productName"),
"price": product.get("price"),
"sales": product.get("saleCount")
}
result.append(item)
return pd.DataFrame(result)
return pd.DataFrame()
def parse_product_detail(data):
"""
解析商品详情数据
:param data: 商品详情原始数据
:return: 解析后的字典
"""
product_info = data.get("result", {}).get("product", {})
return {
"product_id": product_info.get("productId"),
"product_name": product_info.get("productName"),
"description": product_info.get("productDesc"),
"images": product_info.get("productImage")
}
parse_product_list函数使用jsonpath库从商品列表数据中提取关键信息,并整理成pandas的 DataFrame 格式,方便后续分析和存储。parse_product_detail函数则从商品详情数据中提取详细信息,以字典形式返回。
(五)批量采集与数据存储
app_key = "your_app_key"
app_secret = "your_app_secret"
keywords = "服装产业带" # 可替换为具体产业带关键词
all_product_list = []
for page in range(1, 6): # 采集前5页数据
product_list_data = get_product_list(app_key, app_secret, keywords, page)
if product_list_data:
parsed_data = parse_product_list(product_list_data)
all_product_list.append(parsed_data)
result_df = pd.concat(all_product_list)
result_df.to_csv("product_list.csv", index=False, encoding="utf-8")
# 采集商品详情数据
product_ids = result_df["product_id"].tolist()
product_detail_list = []
for product_id in product_ids:
product_detail_data = get_product_detail(app_key, app_secret, product_id)
if product_detail_data:
parsed_detail = parse_product_detail(product_detail_data)
product_detail_list.append(parsed_detail)
detail_df = pd.DataFrame(product_detail_list)
detail_df.to_csv("product_detail.csv", index=False, encoding="utf-8")
上述代码首先通过循环分页采集商品列表数据,解析后合并成一个 DataFrame 并保存为 CSV 文件。然后根据商品 ID 列表,逐一采集商品详情数据,解析后同样保存为 CSV 文件。
四、数据采集优化策略
(一)异步请求提高效率
import asyncio
import aiohttp
async def async_get_product_list(session, app_key, app_secret, keywords, page_no):
url = "https://gw.api.1688.com/router/json"
params = {
"method": "alibaba.product.search",
"app_key": app_key,
"keywords": keywords,
"page_no": page_no,
"page_size": 50,
"timestamp": time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()),
"format": "json"
}
sign = generate_sign(params, app_secret)
params["sign"] = sign
try:
async with session.get(url, params=params) as response:
data = await response.json()
return data
except aiohttp.ClientError as e:
print(f"异步请求商品列表出错: {e}")
return None
async def batch_async_get_product_list(app_key, app_secret, keywords, pages):
async with aiohttp.ClientSession() as session:
tasks = [async_get_product_list(session, app_key, app_secret, keywords, page) for page in pages]
results = await asyncio.gather(*tasks)
return results
# 使用示例
app_key = "your_app_key"
app_secret = "your_app_secret"
keywords = "服装产业带"
pages = range(1, 6)
loop = asyncio.get_event_loop()
async_results = loop.run_until_complete(batch_async_get_product_list(app_key, app_secret, keywords, pages))
利用aiohttp库和asyncio模块实现异步请求商品列表数据,通过并发请求多个页面的数据,大幅缩短数据采集时间,提高采集效率。
(二)数据缓存机制
import redis
import json
r = redis.Redis(host='localhost', port=6379, db=0)
def get_product_list_with_cache(app_key, app_secret, keywords, page_no):
cache_key = f"product_list:{keywords}:{page_no}"
cached_data = r.get(cache_key)
if cached_data:
return json.loads(cached_data)
data = get_product_list(app_key, app_secret, keywords, page_no)
if data:
r.setex(cache_key, 3600, json.dumps(data)) # 缓存有效期1小时
return data
引入 Redis 缓存机制,在获取商品列表数据前先检查缓存中是否存在对应数据。若存在,直接从缓存中读取并返回;若不存在,则调用接口获取数据,并将数据存入缓存,设置合理的缓存有效期,减少重复接口调用,提高数据获取速度。
(三)错误处理与重试
import time
def get_product_list_with_retry(app_key, app_secret, keywords, page_no, max_retries=3, retry_delay=5):
for retry in range(max_retries):
data = get_product_list(app_key, app_secret, keywords, page_no)
if data:
return data
else:
if retry < max_retries - 1:
print(f"请求商品列表失败,第{retry + 1}次重试,等待{retry_delay}秒...")
time.sleep(retry_delay)
print("达到最大重试次数,请求商品列表失败")
return None
针对网络不稳定、接口调用频率限制等导致的请求失败情况,设置重试机制。当请求商品列表数据失败时,按照设定的重试次数和重试间隔时间重新发起请求,确保数据采集的完整性。
通过以上方案,我们实现了基于 1688 API 的产业带数据采集与实时解析。在实际应用中,企业可根据自身需求,进一步拓展和优化该方案,如增加对供应商数据的深度分析、结合机器学习算法挖掘数据价值等,为产业带相关业务决策提供有力支持。