2021-08-08 CFF-CSP 灰度直方图 C语言实现

2021-08-08 CFF-CSP 灰度直方图 C语言实现

前言
本次实验所用设备为微软Surface pro4,操作系统为windows10

注意事项
(1)CFF-CSP考试提交一定要使用C++编译环境 。

实验题目

实现代码如下
1、暴力破解版。

#include<stdio.h>
int main()
{
	//申请变量 
    double L,r,t,sum,result,count;
    int n,count1;
			
	//初始化数据
	scanf("%d",&n);
	scanf("%lf",&L);	
	scanf("%lf",&r);
	scanf("%lf",&t);
    double A[n][n];	
	count1 = 0;	
	for(int i = 0;i < n;i++)
	{
		for(int j = 0;j < n;j++)
		{
			scanf("%lf",&A[i][j]);
		}
	} 	
	
	//对每一个数的邻域进行测试
	for(int i = 0;i < n;i++)
	{
		for(int j = 0;j < n;j++)
		{
			sum = 0.0;     //对总数进行整合的初始化
			count = 0.0;   //对计数器进行初始化 
			
			//对本身这一行以及左边的数据进行加 
			for(int k = 0;k <= r;k++)
			{
				//对左上方的数据进行加 
				for(int g = 0;g <= r;g++)
				{
					if(i-k >= 0 && j-g >= 0)
					{
						//printf("%d %d",i-k,j-g);
						sum += A[i-k][j-g];
						//printf("%0.lf ",A[i-k][j-g]);
						count++;
					}
				}
				
				//对左下方的数据进行加
				for(int g = 1;g <= r;g++)
				{
					if(i-k >= 0 && j+g < n) 
					{
						sum += A[i-k][j+g];
						//printf("%0.lf ",A[i-k][j+g]);
						count++;					
					}
				} 
			}
			
			//对除本身这一行以外的右边的数据进行加
			for(int k = 1;k <= r;k++)
			{
				//对左上方的数据进行加 
				for(int g = 0;g <= r;g++)
				{
					if(i+k < n && j-g >= 0)
					{
						sum += A[i+k][j-g];
						//printf("%0.lf ",A[i+k][j-g]);
						count++;						
					}
				}
				
				//对左下方的数据进行加
				for(int g = 1;g <= r;g++)
				{
					if(i+k < n && j+g < n)
					{
						sum += A[i+k][j+g];
						//printf("%0.lf ",A[i+k][j+g]);
						count++;						
					}
				} 
			}
			//printf("\n");
			
			//printf("%.0lf %0.lf\n",sum ,count);
			//对最后的数据进行整合处理
			//sum = sum-A[i][j];
			result = sum/count;
			if(result <= t)
			{
				//printf("%.0lf%d%d ",A[i][j],i,j);
				count1++;
			}		 
		}
	}
	 
	//对最后结果进行输出
	printf("%d",count1);
	
	return 0;	
}

2、算法捷径版。

#include<stdio.h>


int main()
{
	//声明变量 
    int n, L, r, t;     
    int A[600][600];     
    int result = 0;
    
    //变量初始化
	scanf("%d",&n);
	scanf("%d",&L);
	scanf("%d",&r);
	scanf("%d",&t);
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
             scanf("%d",&A[i][j]);
        }
    }
    
    //声明变量并且初始化 
    int sum = 0, num = 0, lastsum = 0, lastnum = 0;
    
    //对每一行的首个元素的邻域进行处理
	for(int i = 0;i < n;i++)
	{
        sum = num = 0;    //再次进行数据初始化 
        int bound_x = i + r > n - 1? n - 1 : i + r;     //定义坐标x的边界(对每一行的第一个数据进行处理) 
        int bound_y = 0 + r > n - 1? n - 1 : 0 + r;     //定义坐标y的边界 (对每一行的第一个数据进行处理) 
        int start_x = i - r > 0 ? i - r : 0;            //定义坐标x的开始边界(对每一行的第一个数据进行处理) 
        
        //求第一个邻域的元素数量和均值 
		for(int k = start_x; k <= bound_x; k++)
            for(int m = 0; m <= bound_y; m++)
            {
                num++;
                sum += A[k][m];
            }  
        double avg = (double)sum / num; 
        lastnum = num; lastsum = sum;
        if(avg <= t)
            result++;
            
        //对这一行后面的每一列的元素进行处理 
        for(int j = 1; j < n; j++)
        {
            sum = lastsum;    //上一个邻域的总和 
            if(j - r <= 0)    //处于邻域内 
            {
                num = lastnum + bound_x - start_x + 1;
                for(int m = start_x; m <= bound_x; m++)
                    sum += A[m][j+r];
                avg = (double)sum / num;
            }
            else if(j + r > n - 1)
            {
                num = lastnum - (bound_x - start_x + 1);
                for(int m = start_x; m <= bound_x; m++)
                    sum -= A[m][j - r - 1];
                avg = (double)sum / num;
            }
            else
            {
                num = lastnum;
                for(int m = start_x; m <= bound_x; m++)
                    sum += A[m][j+r] - A[m][j - r - 1];
                avg = (double)sum / num;
            }
            if(avg <= t)
                result++;
            lastnum = num; lastsum = sum;
        }
	} 
	
	//输出最后结果
	printf("%d",result); 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值