目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
更多选题指导:
大家好,这里是海浪学长计算机毕设专题,本次分享的课题是
🎯计算机视觉方向毕业设计选题推荐
毕设选题
图像分类
- 研究内容:通过深度学习模型(如卷积神经网络CNN)对图像进行分类和物体识别。研究如何优化模型以提高分类准确率,处理不平衡数据集等问题。
- 涉及技术:数据预处理(归一化、增强)、特征提取(使用预训练网络)、模型训练与优化(使用Adam优化器等)。
- 算法理论:卷积神经网络架构(如ResNet、DenseNet)、迁移学习方法以及数据增强技术(如随机裁剪、翻转等)。
下面是整理的部分相关的毕业设计选题题目示例:
基于标题启发的自媒体文本分类
基于注意力机制的藏文文本分类
基于卷积神经网络的短文本分类
基于深度学习的中文新闻文本分类
基于遗传与反馈的分布式文本分类
基于深度学习的网络舆情文本分类
基于文本分类的教学辅助问答系统
基于文本分类的社区问答检索系统
基于文本分类的考研知识问答系统
基于机器学习的烟叶自动分类研究
基于改进随机森林的苹果分类系统
基于分类策略的术语识别系统融合
基于机器学习的智能垃圾分类系统
基于机器学习的网络流量分类系统
基于机器学习的经济行业分类系统
基于视频分析的车辆自动分类系统
基于目标统计分类的高效视频分析
基于特征分类的儿童行为视频分析
基于深度学习的飞机分类算法研究
基于图像掩膜的服装款式分类研究
基于深度学习的短文本情感分类研究
基于多模态融合的社交情感分类研究
基于深度学习的果树病虫害分类系统
基于机器学习的多模态影像分类研究
基于机器学习的雷达目标和杂波分类
基于计算机视觉的垃圾分类识别系统
基于计算机视觉的玫瑰痤疮分类系统
基于深度学习的眼底多疾病分类研究
基于深度学习的听骨链分割分类算法
基于深度学习的表情分类系统的研究
面向复杂中文长句的情感分类技术研究
基于深度学习的中文科技论文文本分类
基于文本分类的新冠疫情谣言检测方法
基于深度学习的电力设备缺陷文本分类
基于文本语义分块的中医病情分类研究
基于文本分类的电力安规智能问答系统
基于文本分类的智能健康知识问答系统
基于机器学习的视频弹幕分类屏蔽系统
基于机器学习的高效恶意软件分类系统
基于机器学习的塑料分类回收预测系统
基于机器学习的指尖震颤数据分类系统
基于自动机器学习的表征流量分类研究
基于分类算法与聚类算法流量识别系统
基于机器学习的移动应用流量分类算法
基于机器学习技术的自动引文分类研究
基于计算机视觉的花生仁品质分类研究
基于自监督学习的不平衡节点分类算法
自监督学习下小样本遥感图像场景分类
基于计算机视觉的中医望诊面色分类研究
基于深度学习的北部湾经济鱼类分类系统
基于深度学习的视频分类和检测算法实现
面向火星探测的岩石实例分割与分类系统
基于图像识别的羽毛球实时分类统计系统
基于迁移学习的摄影作品识别与分类系统
基于深度学习的考勤记录文本分类算法系统
基于深度学习的自然语言文本分类算法系统
基于深度学习的电力调度日志分类算法系统
基于深度学习的交通视频检测及车型分类研究
基于深度神经网络的评论文本要素类情感分类
基于深度学习的交通驾驶场景分类和道路检测
基于深度学习和矢量量化的脑MRI分割分类
基于深度学习和迁移学习的口罩人脸姿态分类
目标检测
- 研究内容:研究如何在图像中识别多个对象并准确标记其边界框。可以探索如何提高实时检测速度和精度,适应不同场景(如室内、室外)。
- 涉及技术:YOLO(You Only Look Once)、Faster R-CNN、SSD(Single Shot Multibox Detector)等目标检测框架。
- 算法理论:区域提议网络(RPN)、非极大值抑制(NMS)、Anchor机制。
下面是整理的部分相关的毕业设计选题题目示例:
基于深度学习的健身动作识别
基于深度学习的异常目标识别
基于深度学习的面部表情识别
基于深度学习的车辆型号识别
基于深度表示学习的行为识别
无监督学习的车辆重识别方法
基于语义对齐的文本蕴含识别
基于深度学习的命名实体识别
基于视频的人体运动识别方法
基于视频分析的车标识别方法
视频分析中的场景分类与识别
基于深度学习的字符识别系统
基于图像识别的智慧餐饮系统
基于深度学习的田间杂草识别
基于深度学习的电厂仪表识别
基于深度学习的发票识别系统
基于深度学习的手掌静脉识别
基于数字图像处理的试卷识别
基于深度学习的连续行为识别
基于深度学习的植物叶片识别
基于深度学习的人体动作识别
基于深度学习的水上场景识别
基于数字图像处理的框图识别
基于数据增强的面部表情识别
基于深度学习的建筑裂缝识别
基于深度学习的机舱火焰识别
基于深度学习的图像识别水位
基于深度学习的道路裂缝识别
基于深度学习的水下目标检测
基于深度学习的绝缘子目标检测
基于深度学习的交通场景目标检测
基于深度学习的视频目标检测研究
基于深度学习的航空图像目标检测
基于深度学习的番茄病害目标检测算法
课程学习指导下的半监督目标检测框架
基于深度学习的自动驾驶目标检测系统
基于深度学习的智能驾驶危险目标检测
基于深度学习的道路目标检测算法系统
基于目标检测的智慧教室视频分析系统
基于目标检测算法的师生行为分析研究
基于深度学习的红外目标检测算法研究
基于深度学习的海洋鱼类目标检测识别
基于深度学习的织物瑕疵小目标检测技术研究
基于深度学习的油田现场微目标检测技术研究
基于镜头分割和运动目标检测的排球视频分析
基于图像目标检测的岩石种类智能识别与应用
基于深度学习的视频SAR目标检测技术研究
基于深度学习目标检测的白细胞分类技术研究
基于深度学习的试纸目标检测及浓度识别系统
基于深度学习的道路全景图像目标检测算法系统
基于注意力机制与深度学习的机械零件目标检测
基于深度学习的航拍图像目标检测算法应用研究
基于轻量级卷积神经网络的道路目标检测算法验证
基于计算机视觉与深度学习的油茶果目标检测方法
基于深度学习的自动驾驶车辆低辨识目标检测系统
基于深度学习的足球比赛视频目标检测与跟踪研究
基于目标检测算法的智能空调系统能效及舒适性研究
基于计算机视觉的无人机多目标检测及定位算法系统
基于深度学习的无人船水面目标检测与分割算法研究
基于深度神经网络的智能车辆目标检测与学习控制系统
图像分割
- 研究内容:进行像素级分割,尤其在医学影像(如肿瘤检测)和自动驾驶(如道路分割)中的应用。研究如何提高分割精度,减少伪影。
- 涉及技术:U-Net、Mask R-CNN、FCN(全卷积网络)等。
- 算法理论:交叉熵损失函数、Dice系数、IoU(交并比)等评估指标。
下面是整理的部分相关的毕业设计选题题目示例:
基于深度学习的图像语义分割
交通视频中噪声图像分割系统
篮球分割和全局运动重建方法
基于深度学习的息肉分割算法系统
基于深度学习的超声影像分割方法
基于强化学习的车辆语义分割方法
基于深度学习的人物图像自动分割
基于深度学习的结肠息肉分割方法
基于图像分割的盐丘识别算法系统
基于深度学习的服装分割算法系统
基于深度学习的视网膜血管分割方法
基于注意力机制的指称图像分割方法
基于方向超像素的图像分割算法系统
基于深度学习的全心肌分割算法研究
基于弱监督的水下场景图像分割研究
基于深度学习的电力线分割算法系统
基于深度学习的齿痕舌图像分割方法
基于热红外图像的棉叶螨危害分割方法
基于深度学习的污损图像分割算法系统
基于神经网络的胸部X光影像分割方法
基于弱监督学习的工业品表面缺陷分割
基于深度学习的皮肤镜图像分割算法系统
基于深度学习的视网膜血管分割算法系统
基于注意力机制的医学图像分割算法系统
基于通道分组机制的脑部肿瘤图像分割方法
基于深度学习方法的结肠息肉图像分割研究
基于深度学习的室内场景点云分割技术研究
基于深度学习的自动驾驶道路场景分割研究
融合自监督对比学习的雾天街景语义分割算法
基于深度学习的玉米果穗实例分割方法及实现
基于深度学习的胎盘图像分割技术应用与研究
基于深度学习的交通场景图像语义分割算法系统
基于计算机视觉的铁路周界分割及异常感知研究
海浪学长项目示例:
选题迷茫
毕设开题阶段,同学们都比较迷茫该如何选题,有的是被要求自己选题,但不知道自己该做什么题目比较合适,有的是老师分配题目,但题目难度比较大,指导老师提供的信息和帮助又比较少,不知道从何下手。与此同时,又要准备毕业后的事情,比如考研,考公,实习等,一边忙碌备考或者实习,一边还得为毕设伤透脑筋。
选题的重要性
毕设选题其实是重中之重,选题选得是否适合自己将直接影响到后面的论文撰写和答辩,选题不当很可能导致后期一系列的麻烦。
1.选题难易度
选题不能太难,也不能太简单。选题太难可能会导致知识储备不够项目做不出来,选题太难,则可能导致老师那边不同意开题,很多同学的课题被一次次打回来也是这个原因之一。
2.工作量要够
除非是算法类或者科研性项目,项目代码要有一定的工作量和完整度,否则后期论文的撰写会很难写,因为论文是要基于项目写的,如果项目的工作量太少,又缺乏研究性的东西,则会导致很难写出成篇幅的东西。
更多选题指导
我是海浪学长,创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!
最后
🏆🏆🏆为帮助大家节省时间,如果对开题选题,或者相关的技术有不理解,不知道毕设如何下手,都可以随时来问学长,我将根据你的具体情况,提供帮助。