题目描述
给出圆周上的若干个点,已知点与点之间的弧长,其值均为正整数,并依圆周顺序排列。 请找出这些点中有没有可以围成矩形的,并希望在最短时间内找出所有不重复矩形。
输入描述
第一行为正整数 NN,表示点的个数,接下来 NN 行分别为这 NN 个点所分割的各个圆弧长度。
其中, N ≤ 20N≤20。
输出描述
输出所构成不重复矩形的个数。
输入输出样例
示例 1
输入
8
1
2
2
3
1
1
3
3
输出
3
运行限制
最大运行时间:1s
最大运行内存: 128M
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
int x[21]={0};
int n,sum=0,m,ans=0;
//圆的总周长,每一段弧长,统计矩形的个数
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&m);
x[i]=x[i-1]+m;//为了得到每一段的前缀和使用的数组
//为的其实就是后面的循环
sum+=m;
}
for(int a=1;a<=n-3;a++)
for(int b=a+1;b<=n-2;b++)
for(int c=b+1;c<=n-1;c++)
for(int d=c+1;d<=n;d++)
//初始时每一个点各占据一个不重复位置的点,防止重复统计一个矩形
//四个点是因为矩形由四个点组成
//至于上限就是最后尽头时每个点都有不与自己的点的重复的位置
//然后循环就是排列组合
//算法是平行的边长相等,边长相等就等价于弧长相等
{
if(x[b]-x[a]==x[d]-x[c]&&sum-(x[d]-x[a])==x[c]-x[b])
//为了不重复和统计不同情况的矩形,我们就需要移动点的位置
//一旦移动那就不是原来点的弧长,这就是为什么不导入对应点的
//弧长而是前缀,虽然点的位置再变,但他们两个之差是不会变的
//只要差是相等的,那就一定可以组成一个矩形,
//而单单一段弧长,下标变了就难以锁定,所以用差来锁定边长
//包括为什么(x[d]-x[a])不能用x[a]代替,sum为什么不能用x[d]
//因为下标在移动,但是形成矩形的情况一定是和第一次一样的,只不过位置不同
ans++;
}
printf("%d",ans);
return 0;
}