本网站有两个组成部分:
- Builder: 预计算
- 推荐

怎么说呢,我感觉就是把推荐,网站,分析,收集器,每个都是个微服务,用用API交互,反正就这个感觉。
一。给网站添加图表



二 。Seeded recommendations
这名字从没听过,但是书中讲的目测就是频繁项,频繁出现在一起的商品,作为彼此的推荐。
具体原理耳熟能详就不说了,自行百度吧。重点要知道自信度 ,支持度。
具体如果应用关联规则呢?
- 设定最小支持度和最小自信度
- 获得所有交易
- 建立单个itemsets,计算他们的支持度,自信度
- 建立多个物品组成的itemsets,计算他们的自信度,支持度
- 遍历找到满足要求的项
三。获得交易

本文介绍了如何从零开始使用Python和Django框架搭建一个完整的电影推荐系统网站,涉及预计算、推荐功能。文章提到了Seeded recommendations的概念,即通过分析商品的频繁项来实现推荐,并介绍了关联规则的运用,包括设置最小支持度和自信度,应用Apriori算法进行交易获取和关联规则保存。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



