从0开始搭建完整的电影推荐系统网站五(Python+Django)

本文介绍了如何从零开始使用Python和Django框架搭建一个完整的电影推荐系统网站,涉及预计算、推荐功能。文章提到了Seeded recommendations的概念,即通过分析商品的频繁项来实现推荐,并介绍了关联规则的运用,包括设置最小支持度和自信度,应用Apriori算法进行交易获取和关联规则保存。
摘要由CSDN通过智能技术生成

本网站有两个组成部分:

  • Builder: 预计算
  • 推荐

怎么说呢,我感觉就是把推荐,网站,分析,收集器,每个都是个微服务,用用API交互,反正就这个感觉。

一。给网站添加图表

二 。Seeded recommendations

这名字从没听过,但是书中讲的目测就是频繁项,频繁出现在一起的商品,作为彼此的推荐。

具体原理耳熟能详就不说了,自行百度吧。重点要知道自信度 ,支持度。

具体如果应用关联规则呢?

  • 设定最小支持度和最小自信度
  • 获得所有交易
  • 建立单个itemsets,计算他们的支持度,自信度
  • 建立多个物品组成的itemsets,计算他们的自信度,支持度
  • 遍历
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值