pentaho & SPARK

本文介绍了如何利用Pentaho的Adaptive Execution Layer (AEL)与Spark集成,进行大数据环境下的高效数据处理。通过AEL,数据转换能够在不同系统引擎中执行,并直接在Hadoop集群上的Spark中处理大型数据。AEL的配置和Spark引擎的使用使得开发过程更为便捷,可以在不直接接入Spark集群的情况下在本地完成Spark应用的开发。
摘要由CSDN通过智能技术生成

一个人难以开发出一个强大且完整的系统,pentaho集成了BI和DI等功能,应用于报表制作和商业智能相对比较全面,最近看了国外文章,这里做一些介绍。

pentaho 使用Adaptive Execution Layer (AEL)在不用系统引擎中执行数据转换,而在大数据环境下,基于hadoop集群 下的spark能够进行高效的数据处理。AEL为spark定义数据的转换,直接将操作传递给hadoop集群中,从而利用spark 能在多个节点处理大型数据的能力。AEL的目标是一次开发随处执行。

这里需要注意的是,AEL需要在使用spark引擎前配置好:点击打开链接,配置后在run configuration中选择spark引擎。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值