最大正方形--矩阵中的dp

0x01.问题

在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。

示例:

输入:

1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0

输出: 4

	public int maximalSquare(char[][] matrix) 

0x02.dp的简要分析

  • 问题的关键是在矩阵中找一个只包含1的最大正方形。

    • 根据普通的思路,可以暴力的去搜索,每遇到1,就把这个1当做正方形的左上角,去搜索这个正方形,但是需要考虑的情况有些复杂,时间消耗的也较多。

    • 在矩阵中搜索正方形,其实可以分解为无数个互不相关的子问题,于是可以考虑使用dp。

  • dp思路的思考:

    • 状态:dp[i][j]表示以[i][j]为右下角,且只包含 1 的正方形的边长最大值。
    • 转移方程:dp[i][j]=min{dp[i-1][j],dp[i][j-1],dp[i-1][j-1]}+1。取左边,上边,左上角的最小值加1。
    • 初始条件,若(i==0||j==0)&&matrix[i][j]=='1',那么dp[i][j]=1
  • 维护maxSide

    • 在每次计算完一次dp后,maxSide=max{maxSide,dp[i][j]}
    • 最终的答案是maxSide*maxSide

0x03.解决代码

class Solution {
    public int maximalSquare(char[][] matrix) {
        int maxSide=0;
        if(matrix==null||matrix.length==0||matrix[0].length==0){
            return maxSide;
        }
        int m=matrix.length;
        int n=matrix[0].length;
        int[][] dp=new int[m][n];
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(matrix[i][j]=='1'){
                    if(i==0||j==0){
                        dp[i][j]=1;
                    }else{
                        dp[i][j]=Math.min(Math.min(dp[i-1][j],dp[i][j-1]),dp[i-1][j-1])+1;
                    }
                    maxSide=Math.max(dp[i][j],maxSide);
                }
            }
        }
        return maxSide*maxSide;
    }
}

ATFWUS --Writing By 2020–05-08

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ATFWUS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值