谈谈指数和估计经典问题

论著[L2]中的定理5.2.2给出Dirichlet除数问题的结果187/574=0.3257... ,该结果不如尹文霖1959年的结果13/40=0.325,但尹文霖的结果实际没法完成,因为他用到一次同步二变量Weyl不等式外加两次单变量Weyl不等式,其“难度系数”已经远超过[L1]中对定理1(AB定理)的严格证明,存在着后来陈景润和Kolesnik等人的通病,就是没对单变量求和范围是否能划分为O(1)个互不相交的小区间加以说明,甚至无法说明是否能划分成有限个不相交的区间,因为 van der Corput方法要求单变量求和必须经过一整段区间,而这在[L1]中采用技术加以逾越。但用20多页篇幅证明的[L1]定理2其实没啥用。

所以类似地,[L2]的定理5.3.1对ζ(0.5+it)得到的结果187/1148=0.16289... 虽不如1963年Haneke(德国)和陈景润的结果6/37,更不如Kolesnik以及Bombieri等人后来的错误方法获得的结果,但是[L2]结果187/1148的证明使用了经严格证明的[L2]的定理2.1.2,此结果是“AB定理”即[L2]定理2.1.1的进一步深化,但应用不如AB定理广泛,AB定理已经被用到至少10篇重要论文中。

解析数论研究中往往需要让一个变量求和展布到一个不受其他变量约束的区间,[MV]中在广义黎曼猜想成立的条件下企图改进log为loglog而采用了一种技术(见p.73的(13)),但是存在无法弥补的缺陷,就是若 R(i,j,k)∩R(i',j',k')≠φ(空集)则仅能证明i=i',而无法证明j=j'以及k=k',换言之若i=i'而{j,k}≠{j',k'}则可能 R(i,j,k)∩R(i',j',k')≠φ因此[MV]接下去的论证无法进行。若使用集合元素公式

|A(1)∪...∪A(w)|=Σ|A(i)|-ΣΣ|A(i)∩A(j)|+...,

以获得一些明确展布在整段区间上的求和,则区间总数将达到2^w而w=2^N,这立即毁掉[MV]中获得最后的估计;一般放松求和限制pn≤N是用一个带积分的不等式,但会破环指数上函数的形状,还会带来一个log(见[V],引理2)。在[C]的定理4证明中,作者也使用了[MV]中这一错误技术。[D]的p.137特别提到[MV]的结果。
[C]T.H.Chan, Squarefull numbers in arithmetic progressions(II), J.Number Theory, 152(2015), 90-104.
[D]H.Davenport, Multiplicative Number Theory, second edition,revised by H.L.Montgomery, Springer, 1980.
[H]W.Haneke,Verschärfung der Abschätzung von ζ(1/2+it), Acta Arith.,8(1963), 357-430(全文74页篇幅)
[L1]H.-Q.Liu, On the estimates of double exponential sums, Acta Arith. 129(2007),203-247.
[L2]刘弘泉,指数和估计与数论问题,哈尔滨工业大学出版社,共437页,2015年。
[MV]H.L.Montgomery and R.C.Vaughan, Exponential sums with multiplicative coefficients, Invent.Math., 43(1977), 69-82.
[V]R.C.Vaughan, An elementary method in the prime number theory, Acta Arith., 37(1980), 341-348.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值