论著[L2]中的定理5.2.2给出Dirichlet除数问题的结果187/574=0.3257... ,该结果不如尹文霖1959年的结果13/40=0.325,但尹文霖的结果实际没法完成,因为他用到一次同步二变量Weyl不等式外加两次单变量Weyl不等式,其“难度系数”已经远超过[L1]中对定理1(AB定理)的严格证明,存在着后来陈景润和Kolesnik等人的通病,就是没对单变量求和范围是否能划分为O(1)个互不相交的小区间加以说明,甚至无法说明是否能划分成有限个不相交的区间,因为 van der Corput方法要求单变量求和必须经过一整段区间,而这在[L1]中采用技术加以逾越。但用20多页篇幅证明的[L1]定理2其实没啥用。
所以类似地,[L2]的定理5.3.1对ζ(0.5+it)得到的结果187/1148=0.16289... 虽不如1963年Haneke(德国)和陈景润的结果6/37,更不如Kolesnik以及Bombieri等人后来的错误方法获得的结果,但是[L2]结果187/1148的证明使用了经严格证明的[L2]的定理2.1.2,此结果是“AB定理”即[L2]定理2.1.1的进一步深化,但应用不如AB定理广泛,AB定理已经被用到至少10篇重要论文中。
解析数论研究中往往需要让一个变量求和展布到一个不受其他变量约束的区间,[MV]中在广义黎曼猜想成立的条件下企图改进log为loglog而采用了一种技术(见p.73的(13)),但是存在无法弥补的缺陷,就是若 R(i,j,k)∩R(i',j',k')≠φ(空集)则仅能证明i=i',而无法证明j=j'以及k=k',换言之若i=i'而{j,k}≠{j',k'}则可能 R(i,j,k)∩R(i',j',k')≠φ,因此[MV]接下去的论证无法进行。若使用集合元素公式
|A(1)∪...∪A(w)|=Σ|A(i)|-ΣΣ|A(i)∩A(j)|+...,