见他1970年J.of Number Theory的论文,对其中general形式的定理A能很容易举出反例,而这个定理A后来被用到猜想L=4的证明中。此前1969年E.Szemeredi曾应用van der Waerden定理证明过Erdös-Turan猜想L=4的情形,但我已发现van der Waerden定理并未被证明,包括目前已经发表365篇论文的R.L.Graham的非常简短的证明(只有两页),证明中的概念未加说明而导致含混不清。 Roth改进Liouville定理获Fields奖章的著名工作,很遗憾我已发现错的离谱。超越数论里面错误很多,最近看哈工大出版社刘培杰工作室出版的《超越数》一书又找到一些,该书C.L.Siegel著,魏道政翻译的,可以肯定是盗版,里面出现的错误不少,当然比街头廉价的盗版书错误少,但盗版书是违法的。 超越数论里面一项实质错误是使用“对称函数定理”,这个定理的唯一证明在Hungerford著《Algebra》里给出,但要假设存在n个代数无关的未定元以后进一步假设未定元的n个初等对称多项式也代数无关。Hecke名著GTM77里面,使用“对称函数定理”才能证明有理数域的添加几个代数数的扩张都为单扩张。“对称函数定理”在超越数论里作用大了,包括圆周率是超越数,以及Baker的对数线性型理论。