Minimum Or Spanning Tree
一棵生成树的代价为他所有边的边权按位或得到的值。
思路:二进制的题就是要按位考虑。考虑当前这一位是否可以填0,排除掉这一位为0或者是与已经填好的位冲突的边,如果不可以得到一颗生成树,那么这一位只好填1了,否则这一位可以填0。
毕竟是cf的题,有思路之后,代码是没有什么难度的。
#include<bits/stdc++.h>
using namespace std;
// #define int long long
const int N = 1e6 + 5, mod = 1e9 + 7;
struct node{
int x, y, z;
} a[N];
int fa[N], siz[N];
int getf(int x)
{
if (x == fa[x]) return x;
return fa[x] = getf(fa[x]);
}
bool check(int ans, int i, int x)
{
if (((x >> i) & 1)) return 0;
for (int k = 29; k >= i; k--){
if ((x >> k) & 1) {
if (!((ans >> k) & 1)) return 0;
}
}
return 1;
}
signed main()
{
int tt;
tt = 1;
// cin >> tt;
while(tt--){
int n, m;
cin >> n >> m;
for (int i = 1; i <= m; i++){
scanf("%d%d%d", &a[i].x, &a[i].y, &a[i].z);
}
int ans = 0;
for (int k = 29; k >= 0; k--){
for (int i = 1; i <= n; i++) {
fa[i] = i;
siz[i] = 1;
}
for (int i = 1; i <= m; i++){
int val = a[i].z;
if (!check(ans, k, val)) continue;
int x = getf(a[i].x), y = getf(a[i].y);
if (x == y) continue;
if (siz[x] > siz[y]) swap(x, y);
siz[y] += siz[x];
fa[x] = y;
}
int cnt = 0;
for (int i = 1; i <= n; i++) if (getf(i) == i) cnt++;
if (cnt > 1) ans |= (1 << k);
}
printf("%d\n", ans);
}
return 0;
}