iPhone16即将发布,国产手机喊着挑战苹果,实际吓得降价抛货

苹果的iPhone16据称将在9月16日发布,一如以往的,国产手机都说苹果今年不会有创新,如今披露的新技术基本都是国产手机用旧了的科技,不过与他们嘴上喊着不怕相比,在实际行动上却纷纷降价抛货。

04caee45011bcf7e8c5ca5bb2e9c1d8a.jpeg

据悉iPhone16的升级之一是采用40W快充技术,近几年以来苹果都在缓慢地提升iPhone的充电功率,今年的40W快充为苹果有史以来最快的充电功率;不过这与国产手机已开始使用120W乃至200W快充功率相比,iPhone16的充电功率还是太慢了。

iPhone16的另一个升级则是广角镜头采用了4800像素镜头,而此前主镜头已采用4800万像素,这样相对iPhone15确实是重大升级;但是国产手机早已用上了1亿像素镜头,可以说苹果在镜头像素方面的升级同样不算先进。

还有就是A系处理器的升级,A18处理器将采用台积电的第二代3纳米工艺,这个工艺预计高通、联发科等也将采用,如此苹果的A系处理器在先进工艺方面并无优势。当然A18处理器性能估计仍然领先于高通和联发科,毕竟A系处理器已遥遥领先多年时间了。

从这些方面来说,除了一如既往的A系处理器性能领先之外,其他的几项技术升级都是国产手机用旧了的技术,对国产手机的竞争优势并不大,这也是国产手机的底气,不过国产手机为何嘴上喊着不怕,而在实际行动上却是大举降价抛货呢?

8d4cc7d6775730123a2bbab0140048e8.jpeg

国产手机降价,在于苹果iPhone16到来后,iPhone15可能进一步降价带来压力,iPhone15此前已跌穿4500元,iPhone16上市,iPhone15可能会跌穿4000元,如此将直接在价格方面与国产旗舰手机处于同一价位。

对比起国产手机,iPhone15即使再如何不好,性能方面无疑仍然是碾压当下的骁龙8G3手机的,再加上苹果的品牌号召力,在差不多价格的情况下,消费者必然优先选择iPhone15;更何况iPhone15上市以来,国产旗舰手机就打不过iPhone15,销量排行榜显示国产旗舰手机销量远远落后于iPhone15,在全球热销榜上完全看不到国产中高端手机的身影。

至于iPhone16,国产手机可能寄望高通的新款高端芯片骁龙8G4,骁龙8G4的性能据称可能大幅提升,它采用了完全自研的NUVIA核心,由于NUVIA研发团队出自苹果的A系处理器,因此骁龙8G4的性能可望进一步逼近A18处理器。

高通如今似乎也有了底气,新款高端芯片不断提前发布,今年的骁龙8G4也将可能提前到9月份发布,这也导致国产手机的骁龙8G3手机即将过时,这都促使国产手机大举降价抛售,再不降价甩货,这些货就只能大幅贬值了,甚至可能成为仓底货。

e0f4f0f70360e5fe8b284d1ab632be66.jpeg

总的来说,国产手机一直都是嘴上喊的牛,实际上面对苹果的时候仍然不得不怂,苹果每次发布新款iPhone,国产手机都会大幅降价,不降价基本无法与苹果的新iPhone竞争,所以别管嘴上喊得声量多大,只看国产手机的行动,就知道他们怕不怕苹果了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值