P1019 单词接龙

题目链接

不会做看题解一步一步敲,最后竟然还是wa,原来是有一步自己改动给改错了。。
这题是对字符串不会操作,+不会找关系。

#include <iostream>
#include <string>
#include <cmath>
using namespace std;
int n,vis[30]={0},yc[30][30]={0};
string tr[30];
int mt(int x,int y)
{
	bool pp;
	int ky;
	for(int k=tr[x].size()-1;k>=0;k--)
	{
		pp=true;ky=0;
		for(int kx=k;kx<tr[x].size();kx++)
		{
			if(tr[x][kx]!=tr[y][ky++])
			{
				pp=false;
				break;
			}
		}
		if(pp==true)
		{
			return tr[x].size()-k;
		}
	}
	return 0;
}
char ch;
int ans=-1;
int an=0;
void dfs(int p)
{
	bool jx=false;
	for(int j=1;j<=n;j++)
	{
		if(vis[j]>=2) continue;
		if(!yc[p][j]) continue;
		if(yc[p][j]==tr[p].size()||yc[p][j]==tr[j].size()) continue;
		an+=tr[j].size()-yc[p][j];
		vis[j]++;
		jx=true;
		dfs(j);
		an-=tr[j].size()-yc[p][j];
		vis[j]--;
	}
	if(jx==false) ans=max(ans,an);
	return ;
}
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++) cin>>tr[i];
	cin>>ch;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			yc[i][j]=mt(i,j);
		}
	}
	for(int i=1;i<=n;i++)
	{
		if(tr[i][0]==ch)
		{
			vis[i]++;
			an=tr[i].size();
			dfs(i);
			vis[i]=0;
		}
	}
	cout<<ans;
	return 0;
 } 
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值