【leetcode】105.(Medium)Construct Binary Tree from Preorder and Inorder Traveral

解题思路:
递归
先序遍历的第一个结点是根节点
根据根节点和中序遍历的结果可以找到左子树的结点和右子树的结点。
继续递归,将左子树的结点和右子树的结点构造成树,最后一层层创接起来。


时间复杂度:O(nlogn) 递归每层的耗时为O(n),共logn层
空间复杂度:O(nlogn) 递归每层所占空间为O(n),共logn层

如果将函数写成指针的形式(即不新建左子树和右子树的数组,直接在原数组中指明左子树和右子树的范围),时间复杂度可提升到O(logn)

提交代码:

class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        if(preorder.length==0)	return null;
        if(preorder.length==1) {
        	TreeNode node=new TreeNode(preorder[0]);
        	return node;
        }
        TreeNode root=new TreeNode(preorder[0]);
        
        int i,j,leftSize=0;
        for(i=0;i<inorder.length&&inorder[i]!=root.val;i++)
        	leftSize++;
        
        int[] leftInOrder=new int[leftSize];
        int[] leftPreOrder=new int[leftSize];
        int[] rightInOrder=new int[inorder.length-leftSize-1];
        int[] rightPreOrder=new int[inorder.length-leftSize-1];
        
        for(i=0;i<leftSize;i++)
        	leftInOrder[i]=inorder[i];
        for(i=leftSize+1,j=0;i<inorder.length;i++,j++)
        	rightInOrder[j]=inorder[i];
        
        for(i=0;i<leftSize;i++)
        	leftPreOrder[i]=preorder[i+1];
        for(i=leftSize+1,j=0;i<preorder.length;i++,j++)
        	rightPreOrder[j]=preorder[i];
        
    		root.left=buildTree(leftPreOrder,leftInOrder);
    		root.right=buildTree(rightPreOrder,rightInOrder);
    		return root;
    	}
}

运行结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值