一、问题描述
设n是一个正整数,现要求将n分解为若干个互不相同的自然数的和,使这些自然数的乘积最大.
二、算法分析
若a+b=n,则|a-b|越小,a*b就越大
当n<=4时,乘积<n
当n>4时,n=(n-a)+a, a>=2 && n<=n-a 此时乘积>n
贪心策略:把n分成从2开始的连续自然数,如果最后剩下一个数均匀地分给前面各项
具体代码如下:
#include<stdio.h>
#include<string.h>
int a[1000];
int solve(int n)
{
if(n<5)
return n;
memset(a,0,sizeof(a));
int k=1,sum=1;
a[1]=2;
n=n-2;
while(n>a[k])
{
k++;
a[k]=a[k-1]+1;
n=n-a[k];
}
for(int i=1; i<=k; i++)
printf("%d ",a[i]);
printf("\n");
/*如果n剩下的值等于a[k],那么均匀分配前面则多1,所以a[k]再加1
比如n=19
分解成 2,3,4,5
剩下n=5
均匀分配给前面各项2+1,3+1,4+1,5+1,此时多1再添加再最后一项即可
*/
if(n==a[k])
{
a[k]++;
n--;
}
for(int i=0; i<n; i++)
a[k-i]++;
for(int i=1; i<=k; i++)
sum*=a[i];
return sum;
}
int main()
{
int n;
scanf("%d",&n);
int t=solve(n);
printf("%d\n",t);
return 0;
}