算法实现题4-15最优分解问题

本文探讨了如何将一个正整数n分解为互不相同的自然数之和,以使得这些自然数的乘积达到最大。通过贪心策略,从2开始尝试分解,确保每次分解后的数尽可能接近,从而最大化乘积。例如,分解10时,最佳方案为2+3+4,因为1不能再分解而保持不重复。此算法可用于解决最优分解问题。
摘要由CSDN通过智能技术生成

4-15最优分解问题

问题描述:设n是一个正整数。现在要求将n分解为若干互不相同的自然数的和,且使这些自然数的乘积最大。

算法设计:对于给定的正整数n,计算最优分解方案。

数据输入:第1行是正整数n。

输入样例:

10

结果输出:输出最大乘积。

输出样例:

30

贪心策略:

若a+b=const,则|a-b|越小,ab值越大。将要分解的数分解为越接近的数字越好,分解的越多越好。假设每次被减掉的数为i,但是如果i从1开始,1和任何数的乘积都是那个数,所以分解时从2开始,每次i自增,直到剩下的数没有i大,然后将剩下的数在后项优先的方式下均匀地分给前面各项(即从后向前依次将该数加1)。

例如:

从2开始,如果能分解出来就要  10-2=8    8-3 =5  5-4=1<4

到了5那里就是我们的判断条件,因为题目要求分解为不相同的自然数,如果被分解的数分出来以后比分解出来的数小,那么就停止分解,因为再分出来的数要么是重复的要么是1

分解10=2+3+4,剩下1<4,然后为了使前面的不重复,因此把1加到4上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值