4-15最优分解问题
问题描述:设n是一个正整数。现在要求将n分解为若干互不相同的自然数的和,且使这些自然数的乘积最大。
算法设计:对于给定的正整数n,计算最优分解方案。
数据输入:第1行是正整数n。
输入样例:
10
结果输出:输出最大乘积。
输出样例:
30
贪心策略:
若a+b=const,则|a-b|越小,ab值越大。将要分解的数分解为越接近的数字越好,分解的越多越好。假设每次被减掉的数为i,但是如果i从1开始,1和任何数的乘积都是那个数,所以分解时从2开始,每次i自增,直到剩下的数没有i大,然后将剩下的数在后项优先的方式下均匀地分给前面各项(即从后向前依次将该数加1)。
例如:
从2开始,如果能分解出来就要 10-2=8 8-3 =5 5-4=1<4
到了5那里就是我们的判断条件,因为题目要求分解为不相同的自然数,如果被分解的数分出来以后比分解出来的数小,那么就停止分解,因为再分出来的数要么是重复的要么是1
分解10=2+3+4,剩下1<4,然后为了使前面的不重复,因此把1加到4上