The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 10
6). There are no blank lines between cases. A line with a single 0 terminates the input.
For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.
2 3 4 5 0
1 3 5 9
题意:欧拉函数的累加。给你一个n,求(1~n)内的欧拉值的和,主要使用筛选法,网上都有介绍,博客链接 博客链接
#include <stdio.h> #include <string.h> #define maxn 1000000+10 long long int num[maxn]; void F() { num[1]=1; for(int i=2; i<maxn; i++) num[i]=i; for(int i=2; i<maxn; i++) if(num[i]==i) for(int j=i; j<maxn; j+=i) num[j]=num[j]/i*(i-1);//先进行除法是为了防止中间数据的溢出 for(int i=3; i<maxn; i++) num[i]+=num[i-1]; } int main() { F(); int n; while( scanf("%d",&n),n) { printf("%lld\n",num[n]); } return 0; }