题目描述
花匠栋栋种了一排花,每株花都有自己的高度。花儿越长越大,也越来越挤。栋栋决定
把这排中的一部分花移走,将剩下的留在原地,使得剩下的花能有空间长大,同时,栋栋希
望剩下的花排列得比较别致。
具体而言,栋栋的花的高度可以看成一列整数h1,h2..hn。设当一部分花被移走后,剩下的花的高度依次为g1,g2..gm,则栋栋希望下面两个条件中至少有一个满足:
条件 A:对于所有g(2i)>g(2i-1),g(2i)>g(2i+1)
条件 B: 对于所有g(2i) < g(2i-1) , g(2i)< g(2i+1)
注意上面两个条件在m = 1时同时满足,当m > 1时最多有一个能满足。
请问,栋栋最多能将多少株花留在原地。
输入输出格式
输入格式:
输入文件为 flower .in。
输入的第一行包含一个整数n,表示开始时花的株数。
第二行包含n个整数,依次为h1,h2..hn,表示每株花的高度。
输出格式:
输出文件为 flower .out。
输出一行,包含一个整数m,表示最多能留在原地的花的株数。
输入输出样例
输入样例#1: 复制
5
5 3 2 1 2
输出样例#1: 复制
3
说明
【输入输出样例说明】
有多种方法可以正好保留 3 株花,例如,留下第 1、4、5 株,高度分别为 5、1、2,满
足条件 B。
【数据范围】
对于 20%的数据,n ≤ 10;
对于 30%的数据,n ≤ 25;
对于 70%的数据,n ≤ 1000,0 ≤ ℎi≤ 1000;
对于 100%的数据,1 ≤ n ≤ 100,000,0 ≤ hi≤ 1,000,000,所有的hi 随机生成,所有随机数服从某区间内的均匀分布。
结题报告
用dp做也可,用贪心做也可
dp:
这种dp是从前面的状态中选出一个最优值赋给当前状态
fa[i]前i棵花满足条件A时花的个数
fb[i]前i棵花满足条件B时花的个数
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,ans,a[100001],fa[100001],fb[100001];
int main()
{
// freopen("flower.in","r",stdin);
// freopen("flower.out","w",stdout);
scanf("%d",&n);
for (int i=1; i<=n; i++) scanf("%d",&a[i]);
fa[1]=fb[1]=1;
int maxa=0; int maxb=0;
for (int i=2; i<=n; i++)
{
if (a[i-1]<a[i]) maxa=max(maxa,fb[i-1]);//b-->a
if (a[i-1]>a[i]) maxb=max(maxb,fa[i-1]);//a-->b
fa[i]=max(fa[i],maxa+1); fb[i]=max(fb[i],maxb+1);
}
ans=max(ans,max(fa[n],fb[n]));
printf("%d",ans);
return 0;
}
题解中有一种非常巧妙的贪心
#include<cstdio>
#include<algorithm>
using namespace std;
int n,fa=1,fb=1,x,h;
int main()
{
scanf("%d%d",&n,&x);
for (int i=2; i<=n; i++)
{
scanf("%d",&h);
if (x<h) fa=max(fa,fb+1);
if (x>h) fb=max(fb,fa+1);
x=h;
}
printf("%d",max(fa,fb));
return 0;
}
noip前在疯狂颓blog的ljx