[BZOJ3238][AHOI2013]差异(后缀数组+单调栈)

28人阅读 评论(0) 收藏 举报
分类:

题目

传送门
这里写图片描述

题解

求一个定值减去所有后缀组合的lcp*2之和
O(n2)
枚举所有的1i<jn然后借RMQO(1)求出lcp(Ti,Tj);
n的范围无法承受
O(Nlog2N)
根据height[]的性质:从一个位置开始向左最多能都到达的点和向右最多能都到达的点所组成的区间就是这个点造成的影响的范围
考虑使用单调栈,O(n)分别求出lp[],rp[],思路比较巧妙

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
#define ll long long
const int maxn=1e6;
const int inf=1e9;

int n,m=200;
int x[maxn],y[maxn],c[maxn],sa[maxn],rnk[maxn],height[maxn];
char s[maxn];
ll ans;

void build_sa()
{
    for (int i=0; i<m; i++) c[i]=0;
    for (int i=0; i<n; i++) c[x[i]=s[i]]++;
    for (int i=1; i<m; i++) c[i]+=c[i-1];
    for (int i=n-1; i>=0; i--) sa[--c[x[i]]]=i;

    for (int k=1; k<=n; k<<=1)
    {
        int p=0;
        for (int i=n-k; i<n; i++) y[p++]=i;
        for (int i=0; i<n; i++) if (sa[i]>=k) y[p++]=sa[i]-k;

        for (int i=0; i<m; i++) c[i]=0;
        for (int i=0; i<n; i++) c[x[i]]++;
        for (int i=1; i<m; i++) c[i]+=c[i-1];
        for (int i=n-1; i>=0; i--) sa[--c[x[y[i]]]]=y[i];

        swap(x,y);
        p=1; x[sa[0]]=0;
        for (int i=0; i<n; i++)
            x[sa[i]] = y[sa[i-1]]==y[sa[i]] && ((sa[i-1]+k>=n?-1:y[sa[i-1]+k])==(sa[i]+k>=n?-1:y[sa[i]+k]))? p-1:p++;
        if (p>n) break;
        m=p;
    }
}

void build_height()
{
    for (int i=0; i<n; i++) rnk[sa[i]]=i;
    int k=0; height[0]=0;
    for (int i=0; i<n; i++)
    {
        if (!rnk[i]) continue;
        if (k) k--;
        int j=sa[rnk[i]-1];
        while (i+k<n && j+k<n && s[i+k]==s[j+k]) k++;
        height[rnk[i]]=k;
    }
}

int zhan[maxn],lp[maxn],rp[maxn],top;
void findlcp()
{
    for (int i=n; i>=1; i--) height[i]=height[i-1];
    zhan[0]=1;//维护一个单调上升的栈 
    for (int i=2; i<=n; i++)
    {
        while (top && height[zhan[top]]>=height[i]) top--;
        lp[i]=i-zhan[top]; zhan[++top]=i;
    }
    zhan[0]=n+1; top=0;
    for (int i=n; i>=2; i--)
    {
        while (top && height[zhan[top]]>height[i]) top--;
        rp[i]=zhan[top]-i; zhan[++top]=i;
    }

    for (int i=2; i<=n; i++) ans+= (ll) 2*lp[i]*rp[i]*height[i];
}

int main()
{
    scanf("%s",s);
    n=strlen(s);
    build_sa();
    build_height();

    findlcp();
    printf("%lld\n",(ll) n*(n-1)*(n+1)/2-ans);
}

总结

单调栈比较常用,应好好体会

查看评论

BZOJ 3238 [Ahoi2013]差异 后缀数组+单调栈

BZOJ 3238 [Ahoi2013]差异 后缀数组+单调栈
  • wzq_QwQ
  • wzq_QwQ
  • 2015-09-04 22:44:43
  • 1886

BZOJ 3238: [Ahoi2013]差异 后缀数组

卡时过得,感觉自己用错方法了,算了,练练后缀数组也是挺好的。 我们只需要求出height数组之后跑一边单调栈就能知道以每一个点为最小值能扩张的最远的区间,用总的值减去2*左边的个数*右边的个数*he...
  • LZJ209
  • LZJ209
  • 2016-12-28 19:25:39
  • 187

【bzoj3238】[Ahoi2013]差异 后缀数组+单调栈

首先求出height数组,原式很明显可以化成一堆长度的和-两两LCP的和,所以我们考虑每个height能充当多少个区间的最小值即可,那么这个问题可以用单调栈解决,从左和从右各维护一个单调递增的单调栈,...
  • u012288458
  • u012288458
  • 2015-12-06 19:01:52
  • 417

【BZOJ3238】【Ahoi2013】差异 后缀自动机

首先 秦神QY Orz  题解: 这道题后缀数组过于鬼畜(wo’tai’ruo’bu’gan’xie) 所以写了简单好写易于理解不用分治不用RMQ的SAM大叔。 题解: 首先其实我们需要一个后缀树...
  • Vmurder
  • Vmurder
  • 2015-01-14 23:35:46
  • 1646

bzoj 3238 [Ahoi2013]差异 后缀数组 并查集

求一遍后缀数组。初始答案=(n-1)*n*(n+1)/2 按h从大到小枚举每个间隔,然后用并查集合并时把两个size乘积*2从答案中减掉。#include using namespace std...
  • make_it_for_good
  • make_it_for_good
  • 2016-10-26 14:10:19
  • 98

bzoj3238: [Ahoi2013]差异

Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...
  • Ra1nBow_Chan
  • Ra1nBow_Chan
  • 2016-08-19 11:38:43
  • 283

bzoj3238 [Ahoi2013]差异 后缀自动机

题意:给出一个串,求其中任意两个字串的lcp的总和。我们可以对于这个串建一颗后缀自动机,实际上,他的parent边树就是一颗后缀树,我们在后缀树上统计答案,设f表示right集合的大小,可以理解为后缀...
  • qq_35866453
  • qq_35866453
  • 2017-04-12 21:51:47
  • 205

后缀数组+单调栈 【Ahoi2013】bzoj3238 差异

题目大意: 题目分析: 这个公式的前两项可以提出来单算,这两项的总和应该是(n+1)n/2 (n+2)。 问题就转化成了求任意两个后缀的lcp之和。 我们知道两个后缀的lcp就是height数...
  • Todobe
  • Todobe
  • 2016-12-28 15:45:46
  • 176

bzoj 3238 [Ahoi2013]差异(SAM解法)

SAM+dp
  • chai_jing
  • chai_jing
  • 2017-05-11 17:05:38
  • 166

[BZOJ3238][Ahoi2013][后缀自动机][树形DP]差异

题意∑len(Ti)+∑len(Tj)\sum len(Ti)+\sum len(Tj)可以O(1)O(1)计算出来。 主要就是求lcp(Ti,Tj)lcp(Ti,Tj) 将字符串反过来,建立后缀...
  • Coldef
  • Coldef
  • 2017-01-31 11:13:29
  • 442
    个人资料
    持之以恒
    等级:
    访问量: 1万+
    积分: 1985
    排名: 2万+
    博主是个蒟蒻
    最新评论