A_Comme_Amour的博客

如果你认为曾经的你很辉煌,那只能说明现在的你混的还不够好。

[BZOJ3238][AHOI2013]差异(后缀数组+单调栈)

题目

传送门
这里写图片描述

题解

求一个定值减去所有后缀组合的lcp*2之和
O(n2)
枚举所有的1i<jn然后借RMQO(1)求出lcp(Ti,Tj);
n的范围无法承受
O(Nlog2N)
根据height[]的性质:从一个位置开始向左最多能都到达的点和向右最多能都到达的点所组成的区间就是这个点造成的影响的范围
考虑使用单调栈,O(n)分别求出lp[],rp[],思路比较巧妙

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
#define ll long long
const int maxn=1e6;
const int inf=1e9;

int n,m=200;
int x[maxn],y[maxn],c[maxn],sa[maxn],rnk[maxn],height[maxn];
char s[maxn];
ll ans;

void build_sa()
{
    for (int i=0; i<m; i++) c[i]=0;
    for (int i=0; i<n; i++) c[x[i]=s[i]]++;
    for (int i=1; i<m; i++) c[i]+=c[i-1];
    for (int i=n-1; i>=0; i--) sa[--c[x[i]]]=i;

    for (int k=1; k<=n; k<<=1)
    {
        int p=0;
        for (int i=n-k; i<n; i++) y[p++]=i;
        for (int i=0; i<n; i++) if (sa[i]>=k) y[p++]=sa[i]-k;

        for (int i=0; i<m; i++) c[i]=0;
        for (int i=0; i<n; i++) c[x[i]]++;
        for (int i=1; i<m; i++) c[i]+=c[i-1];
        for (int i=n-1; i>=0; i--) sa[--c[x[y[i]]]]=y[i];

        swap(x,y);
        p=1; x[sa[0]]=0;
        for (int i=0; i<n; i++)
            x[sa[i]] = y[sa[i-1]]==y[sa[i]] && ((sa[i-1]+k>=n?-1:y[sa[i-1]+k])==(sa[i]+k>=n?-1:y[sa[i]+k]))? p-1:p++;
        if (p>n) break;
        m=p;
    }
}

void build_height()
{
    for (int i=0; i<n; i++) rnk[sa[i]]=i;
    int k=0; height[0]=0;
    for (int i=0; i<n; i++)
    {
        if (!rnk[i]) continue;
        if (k) k--;
        int j=sa[rnk[i]-1];
        while (i+k<n && j+k<n && s[i+k]==s[j+k]) k++;
        height[rnk[i]]=k;
    }
}

int zhan[maxn],lp[maxn],rp[maxn],top;
void findlcp()
{
    for (int i=n; i>=1; i--) height[i]=height[i-1];
    zhan[0]=1;//维护一个单调上升的栈 
    for (int i=2; i<=n; i++)
    {
        while (top && height[zhan[top]]>=height[i]) top--;
        lp[i]=i-zhan[top]; zhan[++top]=i;
    }
    zhan[0]=n+1; top=0;
    for (int i=n; i>=2; i--)
    {
        while (top && height[zhan[top]]>height[i]) top--;
        rp[i]=zhan[top]-i; zhan[++top]=i;
    }

    for (int i=2; i<=n; i++) ans+= (ll) 2*lp[i]*rp[i]*height[i];
}

int main()
{
    scanf("%s",s);
    n=strlen(s);
    build_sa();
    build_height();

    findlcp();
    printf("%lld\n",(ll) n*(n-1)*(n+1)/2-ans);
}

总结

单调栈比较常用,应好好体会

阅读更多
版权声明:本文为博主原创文章,找到博主并夸博主小可爱方可转载。 https://blog.csdn.net/A_Comme_Amour/article/details/79946707
个人分类: 单调栈 后缀数组
上一篇【BZOJ1717】[Usaco2006 Dec]Milk Patterns 产奶的模式(后缀数组+二分)
下一篇[BZOJ1031] [JSOI2007]字符加密Cipher(后缀数组)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭