NLP小实验:机器翻译(法语=>英语)

实验原理

读取和预处理数据

我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。

import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data

import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l

PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'#定义特殊符号
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print(torch.__version__, device)

接着定义两个辅助函数对后面读取的数据进行预处理。

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]

在这里插入图片描述
以上代码通过定义特殊符号、处理序列、构建词典和读取数据,完成了从原始文本数据到可用于训练的张量数据集的转换。

含注意力机制的encoder-decoder结构

encoder

在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。PyTorch的nn.GRU实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        return self.rnn(embedding, state)

    def begin_state(self):
        return None

Encoder 类继承自 nn.Module,用于实现编码器模型,该模型通常用于序列到序列(seq2seq)任务中。

	def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)
  • 参数:

    • vocab_size:词汇表的大小,即不同词的数量。
    • embed_size:嵌入向量的维度。
    • num_hiddens:RNN 隐藏层的单元数。
    • num_layers:RNN 的层数。
    • drop_prob:丢弃概率,用于 Dropout 层,以防止过拟合。
    • **kwargs:其他可选参数。
  • 初始化:

    • self.embedding:一个嵌入层,将词索引映射到嵌入向量。
    • self.rnn:一个多层 GRU(门控循环单元)网络,用于处理序列数据。
	def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        return self.rnn(embedding, state)
  • 参数:

    • inputs:输入数据张量,形状为 (batch_size, time_steps)。
    • state:RNN 的初始隐藏状态,通常为 None 或一个包含隐藏状态的张量。
  • 步骤:

    • embedding:将输入的词索引转换为嵌入向量,形状为 (batch_size, time_steps, embed_size)。
    • permute(1, 0, 2):交换张量的维度,使其形状变为 (time_steps, batch_size, embed_size),以适应 RNN 的输入格式。
    • self.rnn(embedding, state):将嵌入向量和初始状态输入到 GRU 网络中,返回输出和更新后的隐藏状态。
  • 返回值:

    • RNN 的输出和隐藏状态。
	def begin_state(self):
        return None
  • 功能:返回初始隐藏状态。
  • 返回值:None,表示默认初始状态。

下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是元素h, 而LSTM的是一个元组(h, c)

输出和隐藏状态的形状

attention机制

我们将实现函数:将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear实例均不使用偏差。其中函数 a a a定义里向量 v \boldsymbol{v} v的长度是一个超参数,即attention_size

def attention_model(input_size, attention_size):
    model = nn.Sequential(nn.Linear(input_size, attention_size, bias=False),
                          nn.Tanh(),
                          nn.Linear(attention_size, 1, bias=False))
    return model

注意力机制的输入包括查询项Q、键项K和值项V。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

这个函数 attention_model 构建了一个简单的注意力模型,用于计算输入序列中每个时间步的注意力得分。

Attention Model 的结构


def attention_model(input_size, attention_size):
    model = nn.Sequential(
        nn.Linear(input_size, attention_size, bias=False),
        nn.Tanh(),
        nn.Linear(attention_size, 1, bias=False)
    )
    return model
  • 参数:

    • input_size:输入的特征向量的维度。

    • attention_size:注意力机制中的隐藏层大小,即注意力层的维度。
      返回值:

    • model:一个 nn.Sequential 模型,包含两层线性变换和一个 Tanh 激活函数。
      Attention Model 的结构和步骤

第一层线性变换:
nn.Linear(input_size, attention_size, bias=False)

这层将输入特征向量从 input_size 维度转换为 attention_size 维度。
不使用偏置项 (bias=False),这是因为在注意力机制中通常不需要偏置项。

激活函数:
nn.Tanh()

使用双曲正切函数 (Tanh),引入非线性,使模型能够学习到更复杂的特征。

第二层线性变换:
nn.Linear(attention_size, 1, bias=False)

将隐藏层的输出转换为一个标量,即注意力得分。
同样不使用偏置项 (bias=False)。

基于MLP的注意力

注意力机制的基本概念:

  • 查询(Query, Q):解码器当前时间步的隐藏状态,用于查询最相关的编码器隐藏状态。
  • 键(Key, K):编码器在所有时间步上的隐藏状态,用于匹配查询。
  • 值(Value, V):同样是编码器在所有时间步上的隐藏状态,提供信息给查询。

对于attention_model:

  • 输入:解码器的隐藏状态和编码器在所有时间步上的隐藏状态的连接。
  • 输出:注意力得分,用于计算注意力权重。
def attention_forward(model, enc_states, dec_state):
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)
    alpha = F.softmax(e, dim=0)
    return (alpha * enc_states).sum(dim=0)

  • 这里,dec_state(解码器的当前隐藏状态)被扩展并与 enc_states(编码器在所有时间步的隐藏状态)连接。
    连接后的张量被传递到 MLP 注意力模型中,计算得到注意力得分 e。
  • e 经过 softmax 函数处理,得到注意力权重 alpha。
  • 最后,通过加权求和得到背景向量。

**区别于经典的 QKV 计算
在经典的 QKV 注意力机制中,计算注意力权重的方法是:

在这里插入图片描述

而在上述代码中,注意力得分是通过一个 MLP 模型来计算的,具体步骤是:

  • 连接 enc_states 和 dec_states:将解码器的隐藏状态与每个时间步的编码器隐藏状态连接。
  • 通过 MLP 模型计算注意力得分:将连接后的结果传递到一个多层感知机模型中,计算出注意力得分 e。
  • 计算注意力权重 alpha:对 e 应用 softmax 函数,得到注意力权重 alpha。
  • 加权求和得到背景向量:对编码器的隐藏状态进行加权求和,得到背景向量。

本文注意力模型的计算流程

  • 输入:

    • 输入的特征向量 input 形状为 (batch_size, seq_len, input_size)。
  • 第一层线性变换:

    • 将输入从 input_size 维度变换到 attention_size 维度。
      输出形状为 (batch_size, seq_len, attention_size)。
      激活函数:
  • 应用 Tanh 激活函数。

    • 输出形状为 (batch_size, seq_len, attention_size)。
  • 第二层线性变换:

    • 将每个时间步的隐藏层输出变换为一个标量,即注意力得分。
    • 输出形状为 (batch_size, seq_len, 1)。

在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。

seq_len, batch_size, num_hiddens = 10, 4, 8
model = attention_model(2*num_hiddens, 10) 
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
attention_forward(model, enc_states, dec_state).shape

在这里插入图片描述

attention-decoder

我们直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。

在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

类和初始化

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

Decoder 类继承自 nn.Module,用于实现解码器模型。

  • 参数:

    • vocab_size:目标词汇表的大小。
    • embed_size:嵌入向量的维度。
    • num_hiddens:GRU 隐藏层的单元数。
    • num_layers:GRU 的层数。
    • attention_size:注意力机制中的隐藏层大小。
    • drop_prob:丢弃概率,用于 Dropout 层,以防止过拟合。
  • 初始化:

    • self.embedding:一个嵌入层,将词索引映射到嵌入向量。
    • self.attention:注意力机制模型,用于计算注意力权重。
    • self.rnn:一个多层 GRU 网络,其输入包含注意力输出的上下文向量 c 和嵌入向量 cur_input 的拼接。
    • self.out:一个线性层,将 GRU 的输出映射到词汇表大小的向量。

前向传播

def forward(self, cur_input, state, enc_states):
    """
    cur_input shape: (batch, )
    state shape: (num_layers, batch, num_hiddens)
    """
    # 使用注意力机制计算背景向量
    c = attention_forward(self.attention, enc_states, state[-1])
    # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
    input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
    # 为输入和背景向量的连结增加时间步维,时间步个数为1
    output, state = self.rnn(input_and_c.unsqueeze(0), state)
    # 移除时间步维,输出形状为(批量大小, 输出词典大小)
    output = self.out(output).squeeze(dim=0)
    return output, state
  • 参数:

    • cur_input:当前时间步的输入张量,形状为 (batch_size,)。
    • state:GRU 的隐藏状态,形状为 (num_layers, batch_size, num_hiddens)。
    • enc_states:编码器的所有隐藏状态,形状为 (seq_len, batch_size, num_hiddens)。
  • 步骤:

    • 使用注意力机制计算背景向量 c。
    • 将嵌入后的输入和背景向量在特征维度上拼接。
    • 为拼接后的向量增加一个时间步维度。
    • 将拼接后的向量输入 GRU,得到输出和新的隐藏状态。
    • 将 GRU 的输出通过线性层映射到词汇表大小。
    • 移除时间步维度,返回输出和新的隐藏状态。

初始隐藏状态

def begin_state(self, enc_state):
    # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
    return enc_state
  • 功能:将编码器的最终隐藏状态作为解码器的初始隐藏状态。

训练模型

batch_loss

我们先实现batch_loss函数计算一个小批量的损失。解码器在最初时间步的输入是特殊字符BOS。之后,解码器在某时间步的输入为样本输出序列在上一时间步的词,即强制教学。此外,我们在这里也使用掩码变量避免填充项对损失函数计算的影响。

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

初始化编码器状态&计算编码器输出

batch_size = X.shape[0]
enc_state = encoder.begin_state()
enc_outputs, enc_state = encoder(X, enc_state)
  • 获取批次大小。
  • 初始化编码器的隐藏状态。
  • 通过编码器计算输出和更新后的隐藏状态。

初始化解码器状态和输入

dec_state = decoder.begin_state(enc_state)
dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
  • 初始化解码器的隐藏状态为编码器的最终隐藏状态。
  • 解码器在最初时间步的输入是 BOS(序列开始符)。

初始化掩码和损失值

mask, num_not_pad_tokens = torch.ones(batch_size,), 0
l = torch.tensor([0.0])
  • 初始化掩码变量 mask,初始值为全1。
  • 初始化非填充项的计数器 num_not_pad_tokens 为0。
  • 初始化总损失 l 为0。

计算每个时间步的损失

复制代码
for y in Y.permute(1, 0):  # Y shape: (batch, seq_len)
    dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
    l = l + (mask * loss(dec_output, y)).sum()
    dec_input = y  # 使用强制教学
    num_not_pad_tokens += mask.sum().item()
    # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
    mask = mask * (y != out_vocab.stoi[EOS]).float()
  • Y.permute(1, 0)将目标序列 Y 的形状从 (batch_size, seq_len) 转换为 (seq_len, batch_size),方便按时间步迭代。
  • 通过解码器计算当前时间步的输出和更新后的隐藏状态。
  • 计算当前时间步的损失,并使用掩码忽略填充项的损失。
  • 使用强制教学,将当前时间步的真实标签 y 作为下一个时间步的输入。
  • 更新非填充项的计数器。
  • 更新掩码,如果遇到 EOS(序列结束符),后续的掩码值将为0。

计算平均损失

return l / num_not_pad_tokens
  • 返回平均损失,即总损失除以非填充项的数量。

train

train函数中,我们需要同时迭代编码器和解码器的模型参数。train 函数是一个标准的训练循环,实现了对编码器和解码器的联合训练。它使用了 Adam 优化器和交叉熵损失函数,并通过批量处理和反向传播来更新模型参数。每个 epoch 的损失被累计并输出,用于监控训练过程中的模型性能。

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)

    loss = nn.CrossEntropyLoss(reduction='none')
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    for epoch in range(num_epochs):
        l_sum = 0.0
        for X, Y in data_iter:
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            l = batch_loss(encoder, decoder, X, Y, loss)
            l.backward()
            enc_optimizer.step()
            dec_optimizer.step()
            l_sum += l.item()
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))
  • encoder:编码器模型实例。
  • decoder:解码器模型实例。
  • dataset:包含训练数据的 PyTorch 数据集。
  • lr:学习率,用于优化器。
  • batch_size:每个批次的数据量。
  • num_epochs:训练的总轮数。

初始化优化器

enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)
  • 使用 Adam 优化器分别为编码器和解码器的参数进行优化。
  • 学习率 lr 被传递给优化器。

定义损失函数

loss = nn.CrossEntropyLoss(reduction='none')
  • 使用交叉熵损失函数,并设置 reduction=‘none’,以便我们可以在后续步骤中手动处理损失。

创建数据迭代器

data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
  • 使用 DataLoader 创建数据迭代器,指定批次大小和是否打乱数据。

训练循环

for epoch in range(num_epochs):
    l_sum = 0.0
    for X, Y in data_iter:
        enc_optimizer.zero_grad()
        dec_optimizer.zero_grad()
        l = batch_loss(encoder, decoder, X, Y, loss)
        l.backward()
        enc_optimizer.step()
        dec_optimizer.step()
        l_sum += l.item()
    if (epoch + 1) % 10 == 0:
        print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))
  • 每个 epoch:
    • 初始化 l_sum 用于累计损失。
  • 每个批次:
    • enc_optimizer.zero_grad() 和 dec_optimizer.zero_grad():梯度清零。
    • l = batch_loss(encoder, decoder, X, Y, loss):计算当前批次的损失。
    • l.backward():反向传播计算梯度。
    • enc_optimizer.step() 和 dec_optimizer.step():更新模型参数。
    • 累加损失 l_sum。
  • 每 10 个 epoch 打印一次损失:
    • 打印当前 epoch 的平均损失。

创建实例训练模型

  • embed_size:嵌入向量的维度,设置为 64。
  • num_hiddens:GRU 隐藏单元的数量,设置为 64。
  • num_layers:GRU 的层数,设置为 2。
  • attention_size:注意力机制中的隐藏层大小,设置为 10。
  • drop_prob:Dropout 概率,设置为 0.5。
  • lr:学习率,设置为 0.01。
  • batch_size:每个批次的数据量,设置为 2。
  • num_epochs:训练的总轮数,设置为 50。
embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

在这里插入图片描述

预测不定长序列

这里我们实现最简单的贪婪搜索生成解码器在每个时间步的输出(还有穷举搜索和束搜索的方法,详见link)。

def translate(encoder, decoder, input_seq, max_seq_len):
    in_tokens = input_seq.split(' ')
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
    enc_state = encoder.begin_state()
    enc_output, enc_state = encoder(enc_input, enc_state)
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    dec_state = decoder.begin_state(enc_state)
    output_tokens = []
    for _ in range(max_seq_len):
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        pred = dec_output.argmax(dim=1)
        pred_token = out_vocab.itos[int(pred.item())]
        if pred_token == EOS:  # 当任一时间步搜索出EOS时,输出序列即完成
            break
        else:
            output_tokens.append(pred_token)
            dec_input = pred
    return output_tokens

简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。
在这里插入图片描述

评价翻译结果

评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)[1]。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

具体来说,设词数为 n n n的子序列的精度为 p n p_n pn。它是预测序列与标签序列匹配词数为 n n n的子序列的数量与预测序列中词数为 n n n的子序列的数量之比。

举个例子,假设标签序列为 A A A B B B C C C D D D E E E F F F,预测序列为 A A A B B B B B B C C C D D D,那么 p 1 = 4 / 5 , p 2 = 3 / 4 , p 3 = 1 / 3 , p 4 = 0 p_1 = 4/5, p_2 = 3/4, p_3 = 1/3, p_4 = 0 p1=4/5,p2=3/4,p3=1/3,p4=0。设 l e n label len_{\text{label}} lenlabel l e n pred len_{\text{pred}} lenpred分别为标签序列和预测序列的词数,那么,BLEU的定义为

exp ⁡ ( min ⁡ ( 0 , 1 − l e n label l e n pred ) ) ∏ n = 1 k p n 1 / 2 n , \exp\left(\min\left(0, 1 - \frac{len_{\text{label}}}{len_{\text{pred}}}\right)\right) \prod_{n=1}^k p_n^{1/2^n}, exp(min(0,1lenpredlenlabel))n=1kpn1/2n,

其中 k k k是我们希望匹配的子序列的最大词数。可以看到当预测序列和标签序列完全一致时,BLEU为1。

因为匹配较长子序列比匹配较短子序列更难,BLEU对匹配较长子序列的精度赋予了更大权重。例如,当 p n p_n pn固定在0.5时,随着 n n n的增大, 0. 5 1 / 2 ≈ 0.7 , 0. 5 1 / 4 ≈ 0.84 , 0. 5 1 / 8 ≈ 0.92 , 0. 5 1 / 16 ≈ 0.96 0.5^{1/2} \approx 0.7, 0.5^{1/4} \approx 0.84, 0.5^{1/8} \approx 0.92, 0.5^{1/16} \approx 0.96 0.51/20.7,0.51/40.84,0.51/80.92,0.51/160.96。另外,模型预测较短序列往往会得到较高 p n p_n pn值。因此,上式中连乘项前面的系数是为了惩罚较短的输出而设的。举个例子,当 k = 2 k=2 k=2时,假设标签序列为 A A A B B B C C C D D D E E E F F F,而预测序列为 A A A B B B。虽然 p 1 = p 2 = 1 p_1 = p_2 = 1 p1=p2=1,但惩罚系数 exp ⁡ ( 1 − 6 / 2 ) ≈ 0.14 \exp(1-6/2) \approx 0.14 exp(16/2)0.14,因此BLEU也接近0.14。

BLEU

下面来实现BLEU的计算。

def bleu(pred_tokens, label_tokens, k):
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    score = math.exp(min(0, 1 - len_label / len_pred))
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int)
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    return score

  • 参数
    • pred_tokens:机器翻译生成的令牌列表。
    • label_tokens:参考翻译的令牌列表。
    • k:计算 BLEU 分数时考虑的最大 n-gram 的长度。

步骤详解

  • 计算翻译长度比率的惩罚项:
len_pred, len_label = len(pred_tokens), len(label_tokens)
score = math.exp(min(0, 1 - len_label / len_pred))
- 计算预测翻译和参考翻译的长度。
- 如果预测翻译的长度小于参考翻译的长度,计算一个惩罚项,以避免生成过短的翻译。
  • 计算 n-gram 匹配数和更新得分:
for n in range(1, k + 1):
    num_matches, label_subs = 0, collections.defaultdict(int)
    for i in range(len_label - n + 1):
        label_subs[''.join(label_tokens[i: i + n])] += 1
    for i in range(len_pred - n + 1):
        if label_subs[''.join(pred_tokens[i: i + n])] > 0:
            num_matches += 1
            label_subs[''.join(pred_tokens[i: i + n])] -= 1
    score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
- 对于每个 n 从 1 到 k,计算 n-gram 匹配数。
- 使用一个字典 label_subs 来记录参考翻译中每个 n-gram 的出现次数。
- 对于每个预测翻译中的 n-gram,如果在 label_subs 中存在,则增加匹配数,并减少该 n-gram 的计数。
- 计算 n-gram 的匹配比例,并更新得分。
  • 定义一个辅助打印函数。
def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

预测正确则分数为1。
在这里插入图片描述

小结

这个机器翻译网络通过编码器-解码器架构和注意力机制,有效地处理了序列到序列的翻译任务。编码器提取源语言的特征,解码器结合注意力机制,动态关注源语言的不同部分,生成目标语言的翻译。训练过程中,通过逐时间步解码和梯度下降优化,使模型能够逐渐学习到准确的翻译。最后,使用 BLEU 分数评估翻译结果,衡量模型的性能。
(内容不完善待后续修改)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值