1553:【例 2】暗的连锁 树上差分

题目链接:http://ybt.ssoier.cn:8088/problem_show.php?pid=1553
差分能够更好的解决区间问题。
在讲树上差分之前,首先需要知道树的以下两个性质:

(1)任意两个节点之间有且只有一条路径。

(2)根节点确定时,一个节点只有一个父亲节点
这两个性质都很容易证明。那么我们知道,如果假设我们要考虑的是从u到v的路径,u与v的lca是a,那么很明显,如果路径中有一点u′已经被访问了,且u′≠a,那么u’的父亲也一定会被访问,这是根据以上性质可以推出的。所以,我们可以将路径拆分成两条链,u->a和a->v。那么树上差分有两种常见形式:(1)关于边的差分;(2)关于节点的差分。

①关于边的差分:
将边拆成两条链之后,我们便可以像差分一样来找到路径了。用cf[i]
代表从i到i的父亲这一条路径经过的次数。因为关于边的差分,a是不在其中的,所以考虑链u->a,则就要使cf[u]++,cf[a]−−。然后链a->v,也是cf[v]++,cf[a]−−。所以合起来便是cf[u]++,cf[v]++,cf[a]−=2。然后,从根节点,对于每一个节点x,都有如下的步骤:
1)枚举x的所有子节点u
2)dfs所有子节点u
3)cf[x]+=cf[u]
那么,为什么能够保证这样所有的边都能够遍历到呢?因为我们刚刚已经说了,如果路径中有一点u′已经被访问了,且u′≠a,那么u′的父亲也一定会被访问。所以u′被访问几次,它的父亲也就因为u′被访问了几次。所以就能够找出所有被访问的边与访问的次数了。路径求交等一系列问题就是通过这个来解决的。因为每个点都只会遍历一次,所以其时间复杂度为Θ(n)
②关于点的差分:
还是与和边的差分一样,对于所要求的路径,拆分成两条链。步骤也和上面一样,但是也有一些不同,因为关于点,u与v的lca是需要包括进去的,所以要把lca包括在某一条链中,用cf[i]表示i被访问的次数。最后对cf数组的操作便是cf[u]++,cf[v]++,cf[a]−−,cf[father[a]]−−。其时间复杂度也是一样的Θ(n).

本题就是就是对边的差分,首先题目给的是一颗树,然后给我们m条附加边(非树边),在每一条非树边(x,y)添加到树边中,就会在树上(x,y)路径形成一个环。

因而我们每次读入一条附加边,就称就给x到y的路径上的所有主要边记录上“被覆盖一次”,这样再去遍历所有主要边。这样题目就变成了**给定一张无向图和一颗生成树,求每条“树边”被“非树边”覆盖了多少次。

对于我们想要切割的一条主要边,有以下3种情况

若这条边被覆盖0次,则可以任意再切断一条附加边
若这条边被覆盖1次,那么只能再切断唯一的一条附加边
若这条边被覆盖2次及以上,没有可行的方案

所以我们求的被覆盖次树就是上述树上差分求的cf[]。
/*我们给树上每个点一个初始为0的权值,然后对每条非树边(x,y),令节点x,y的权值+1,节点lca(x,y)的权值-=2,最后深度优先遍历,求出f[x]表示以x为根节点的子树中各个点的权值和。f[x]就是x与父节点之间被“树边”覆盖的次数,时间复杂度为O(N+M)。

PS:本题对应的是树上边差分,我们最后dif[lca(u,v)]所得是lca(u,v)和pre[lca(u,v)][0]两点所在的边;另一种差分是点差分,我们就不能用dif[lca(u,v)]-=2,而是dif[lca(u,v)]–,dif[lca(pre[lca(u,v)][0])]–,因为lca(u,v)也在u…v这条路径上,它同样需要被加x。回溯的时候会从u和v两个方向都给lca(u,v)加一个x,而它只能加一个,因此dif[lca(u,v)]-=x。而lca(u,v)的爸爸则根本无法被加,在lca(u,v)已经只加一个x了,因此dif[pre[lca(u,v)]]-=x就能让lca(u,v)的爸爸不加x

给出ac代码:

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+7,M = 4e5+7;
int n,m,cnt;
int head[M],ver[M],nex[M];
int depth[N],pre[N][22],vis[N],sta[N],dif[N],lg[N];
void add(int x,int y){
	ver[++cnt]  = y;
	nex[cnt] = head[x];
	head[x] = cnt;
}
void read(){
	scanf("%d%d",&n,&m);
	for(int i = 1,x,y;i < n;i++){
		scanf("%d%d",&x,&y);
		add(x,y),add(y,x);
	}
}
void lca_dfs(int f,int fa){
	depth[f] = depth[fa] + 1;
	pre[f][0] = fa;
	for(int i=1;(1<<i) <= depth[f] ; i++)
	pre[f][i] = pre[pre[f][i-1]][i-1];
	
	for(int i=head[f];i;i=nex[i])
	if(ver[i]!= fa)
	lca_dfs(ver[i],f);
}
int lca(int x,int y){
	if(depth[x] < depth[y]) swap(x,y);
	while(depth[x] > depth[y])
	x = pre[x][lg[depth[x] - depth[y]]-1 ];
	if(x==y) return x;
	for(int i=lg[depth[x]]-1;i>=0;i--)
	if(pre[x][i] != pre[y][i])
	x = pre[x][i],y = pre[y][i];
	
	return pre[x][0];
}
int dfs(int f){
	sta[f] = dif[f];
	vis[f] = 1;
	for(int i=head[f];i;i=nex[i]){
		int y = ver[i];
		if(vis[y]) continue;
		sta[f] += dfs(y);
	}
	return sta[f];
}
void solve(){
	for(int i=1;i<=n;i++)
	lg[i] = lg[i-1] + (1<<lg[i-1] == i);
	lca_dfs(1,0);
	for(int i=1,x,y;i<=m;i++){
		scanf("%d%d",&x,&y);
		 dif[x] ++;
		 dif[y] ++;
		 dif[lca(x,y)] -= 2;
	}
	dfs(1);
	int ans = 0;
	for(int i=1;i<=n;i++){
		if(sta[i]==0 && i!=1) ans += m;
		if(sta[i]==1) ans ++;
	}
	printf("%d\n",ans);
}
int main(){
	read();
	solve();
	return 0;
}

参考文献:
https://www.cnblogs.com/ice-wing/p/7709311.html
李煜东 算法竞赛进阶指南

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值