【计算机视觉前沿研究 热点 顶会】ECCV 2024中扩散模型有关的论文

神经辐射场修复的驯服潜在扩散模型

神经辐射场(NERF)是一种从多视角图像进行三维重建的表示法。尽管最近的一些工作表明,在编辑具有扩散先验的重建的 NERF 方面取得了初步成功,但他们仍然在努力在完全未覆盖的区域中合成合理的几何图形。一个主要原因是来自扩散模型的合成内容的高度多样性阻碍了辐射场收敛到清晰和确定的几何形状。此外,在实际数据上应用潜在扩散模型通常会产生与图像条件不一致的纹理漂移,这是由于自动编码错误造成的。像素距离损失的使用进一步强化了这两个问题。为了解决这些问题,我们建议通过按场景定制来缓和扩散模型的随机性,并通过掩蔽的对抗性训练来缓解纹理变化。

扩散模型是几何批评者:使用预先训练的扩散先验进行单图像 3D 编辑

我们提出了一种新的图像编辑技术,可以对单个图像进行 3D 操作,如对象旋转。现有的方法通常依赖于合成的多视图数据集来训练专门的模型,从而限制了它们在具有显著不同布局和样式的开域图像上的有效性。相比之下,我们的方法直接利用在广泛的文本-图像对上训练的强大的图像扩散模型,从而保持了它们出色的泛化能力。这一目标是通过开发一种迭代的新型视图合成和几何对齐算法来实现的。

具有形态骨骼控制的模拟冠状动脉解剖的扩散模型

虚拟干预能够在患者特定的冠状动脉解剖结构内实现基于物理的设备部署的模拟。这一框架通过在相同的解剖结构中部署反事实设备设计来探索替代方案,揭示了影响患者结果的关键设计因素。相比之下,我们用解剖反事实模拟替代场景的能力是非常有限的。在这项研究中,我们研究了潜在扩散模型(LDM)如何为虚拟介入研究定制合成冠状动脉解剖结构。我们介绍了几种适应来加强关于拓扑有效性、局部形态形状和整体骨骼结构的解剖约束。

作为数据挖掘工具的扩散模型

本文演示了如何使用生成式模型作为数据挖掘工具。我们的观点

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值