【前沿 热点 顶会】AAAI 2025中与目标检测有关的论文

CP-DETR: Concept Prompt Guide DETR Toward Stronger Universal Object Detection(AAAI 2025)

最近关于通用物体检测的研究旨在将语言引入最先进的闭集检测器,然后通过构建大规模(文本区域)数据集进行训练,以推广开放集概念。然而,这些方法面临两个主要挑战:(i)如何有效地利用提示中的先验信息以泛化物体,以及(ii)如何在下游任务中减少对齐偏差,这两者在预训练以外的一些场景中导致次优性能。为了解决这些挑战,我们提出了一种强大的通用检测基础模型,称为CP-DETR,该模型在几乎所有场景中都具有竞争力,只需一个预训练权重。具体来说,我们设计了一种高效的提示视觉混合编码器,通过逐层和多尺度融合模块增强提示与视觉之间的信息互动。然后,混合编码器通过提示多标签损失和辅助检测头充分利用提示信息。除了文本提示外,我们还设计了两种实用的概念提示生成方法,即视觉提示和优化提示,通过具体的视觉示例提取抽象概念,并在下游任务中稳定地减少对齐偏差。凭借这些有效的设计,CP-DETR在广泛的场景中表现出卓越的通用检测性能。例如,我们的Swin-T主干模型在LVIS上达到了47.6的零样本AP,而Swin-L主干模型在ODinW35上达到了32.2的零样本AP。此外,我们的视觉提示生成方法通过交互检测在COCO验证集上达到了68.4的AP,而优化提示在ODinW13上达到了73.1的全样本AP。

SCKD: Semi-Supervised Cross-Modality Knowledge Distillation for 4D Radar Object Detection(AAAI 2025)

对于自动驾驶汽车来说,3D 目标检测是一项基础的感知任务。使用 4D 毫米波雷达完成这样的任务极具吸引力,因为该传感器能够获取类似于激光雷达的 3D 点云,同时在恶劣天气下仍能保持稳定的测量。然而,由于雷达点云的高稀疏性和噪声,现有方法的性能仍然远低于预期。在本文中,我们针对基于 4D 雷达的 3D 目标检测提出了一种新颖

### 2025目标检测算法的发展趋势 随着计算机视觉技术的进步以及硬件性能的提升,预计到2025年,目标检测领域将继续保持快速发展态势。以下是几个可能的趋势和发展方向: #### 更高效的实时处理能力 为了适应自动驾驶汽车、无人机监控等应用场景的需求,未来的目标检测算法将进一步优化推理速度,在保证精度的同时实现更低延迟下的高效运行。这不仅依赖于更先进的神经网络架构设计,还需要借助专用AI芯片的支持。 #### 跨模态多传感器融合 单一类型的感知数据难以应对复杂环境带来的挑战,因此跨模态(如RGB-D相机、LiDAR激光雷达)、多源异构传感设备之间的协同工作将成为主流发展方向之一。通过整合不同类型的信息输入,可以显著提高系统的鲁棒性和准确性[^1]。 #### 自监督学习弱标注训练 鉴于大规模高质量标记样本获取成本高昂且耗时较长,自监督预训练框架能够利用海量未标注图片视频资源自动挖掘潜在模式特征;而基于少量正负样例指导的半/全弱标签机制则有助于缓解人工标注压力并加速模型迭代更新过程。 #### 可解释性强的人工智能决策支持系统构建 对于医疗影像诊断、安防监控预警等领域而言,除了追求高准确率外,如何让机器给出易于理解的理由说明同样重要。为此,研究者们正在探索引入注意力机制、可视化工具等方式增强预测结果背后逻辑关联性的表达力,使最终输出更具说服力和可信度。 ```python import torch from torchvision.models.detection import fasterrcnn_resnet50_fpn, FasterRCNN_ResNet50_FPN_Weights weights = FasterRCNN_ResNet50_FPN_Weights.DEFAULT model = fasterrcnn_resnet50_fpn(weights=weights) model.eval() ``` 此代码展示了使用PyTorch库加载预训练好的Faster R-CNN模型的一个简单例子。虽然这不是针对2025年的具体实现,但它代表了当前较为流行的一种两阶段目标检测方法,未来这类模型可能会更加轻量化并且具备更高的效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值