排序算法之归并排序

归并排序是所有排序算法中最稳定的,其基本思想是:将待排序的元素分成大小大致相同的集合,分别对2个子集合进行排序,最终将排好的子集合合并为所以要求的排好序的集合。先看看c++的实现代码。

#include <iostream>
#include <string.h>
#include <malloc.h>
#include <assert.h>

using namespace std;

template < typename T >
class merge
{
    private:
        T *assist;    //辅助数组指针;
    public:
        ~merge()      //释放辅助空间
        {
            free( assist );
        }

        void mergeSort( T *a, int length )
        {
            int step = 1;

            assist = ( T* )malloc( sizeof( T ) * length ); //分配辅助数组内存空间
            assert( assist != NULL );

            while( step * 2 < length * 2 )             //合并终止条件,还可以让循环次数小于length/2
            {
                int leftBegin, leftEnd, rightBegin, rightEnd;   //合并段的起终位置
                int index = 0;

                for( leftBegin = 0; leftBegin < length;leftBegin = rightEnd )
                {
                    rightBegin = leftEnd = leftBegin + step;
                    rightEnd = rightBegin + step;

                    if( rightBegin > length - 1 )
                    {
                        rightBegin = leftEnd = length - 1;
                    }
                    if( rightEnd > length )
                    {
                        rightEnd = length;
                    }

                    //比较大小进行合并
                    while( leftBegin < leftEnd && rightBegin < rightEnd )
                    {
                        assist[ index++ ] = a[ leftBegin ] < a[ rightBegin ] ? a[ leftBegin++ ] : a[ rightBegin++ ];
                    }

                    //将剩余部分复制到辅助数组
                    while( leftBegin < leftEnd )
                    {
                        assist[ index++ ] = a[ leftBegin++ ];
                    }

                    while( rightBegin < rightEnd )
                    {
                        assist[ index++ ] = a[ rightBegin++ ];
                    }
                }

                //将辅助数组复制到原数组
                memcpy( a, assist, length * 4 );

                step *= 2;
            }
        }
};

int main()
{
    int *a;
    int length;

    cin >> length;
    a = ( int * )malloc( sizeof(int) * length );

    for( int i = 0; i < length; i++)
    {
        cin >> a[ i ];
    }

    merge<int> m;
    m.mergeSort( a, length );

    for( i = 0; i < length; i++)
    {
        cout << a[ i ] << " ";
    }
    cout << endl;

    return 0;
}

衡量一个算法的好坏,我们往往用时间复杂度进行衡量。当然还有与之类似的空间复杂度,在目前情况下,存储空间已经不是问题了,所以空间复杂度有所弱化。归并排序当n<=1时时间复杂度为O(1),这个比较好理解,被排序的问题规模小于等于1时,问题在常数复杂度的情况下就可以完成。有点难度是当n>1时,T(n) = 2T(n/2) + O(n)。程序中有两个循环分别为:“while( step * 2 < length * 2 )”“for( leftBegin = 0; leftBegin < length;leftBegin = rightEnd )”,在最坏情况下他们最多循环n/2次,所以有2T(n/2)。在归并一趟结束后有一个内存拷贝memcpy,它要将临时空间中的所有数据复制到原来的数组中,用于下一趟归并。所以又有O(n)。常数级别我们一般不考虑,主要的是这个递归方程T(n)
= 2T(n/2) + O(n),求解可得T(n) = O(nlogn)。


有不对的地方希望大家指正

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值