归并排序是所有排序算法中最稳定的,其基本思想是:将待排序的元素分成大小大致相同的集合,分别对2个子集合进行排序,最终将排好的子集合合并为所以要求的排好序的集合。先看看c++的实现代码。
#include <iostream>
#include <string.h>
#include <malloc.h>
#include <assert.h>
using namespace std;
template < typename T >
class merge
{
private:
T *assist; //辅助数组指针;
public:
~merge() //释放辅助空间
{
free( assist );
}
void mergeSort( T *a, int length )
{
int step = 1;
assist = ( T* )malloc( sizeof( T ) * length ); //分配辅助数组内存空间
assert( assist != NULL );
while( step * 2 < length * 2 ) //合并终止条件,还可以让循环次数小于length/2
{
int leftBegin, leftEnd, rightBegin, rightEnd; //合并段的起终位置
int index = 0;
for( leftBegin = 0; leftBegin < length;leftBegin = rightEnd )
{
rightBegin = leftEnd = leftBegin + step;
rightEnd = rightBegin + step;
if( rightBegin > length - 1 )
{
rightBegin = leftEnd = length - 1;
}
if( rightEnd > length )
{
rightEnd = length;
}
//比较大小进行合并
while( leftBegin < leftEnd && rightBegin < rightEnd )
{
assist[ index++ ] = a[ leftBegin ] < a[ rightBegin ] ? a[ leftBegin++ ] : a[ rightBegin++ ];
}
//将剩余部分复制到辅助数组
while( leftBegin < leftEnd )
{
assist[ index++ ] = a[ leftBegin++ ];
}
while( rightBegin < rightEnd )
{
assist[ index++ ] = a[ rightBegin++ ];
}
}
//将辅助数组复制到原数组
memcpy( a, assist, length * 4 );
step *= 2;
}
}
};
int main()
{
int *a;
int length;
cin >> length;
a = ( int * )malloc( sizeof(int) * length );
for( int i = 0; i < length; i++)
{
cin >> a[ i ];
}
merge<int> m;
m.mergeSort( a, length );
for( i = 0; i < length; i++)
{
cout << a[ i ] << " ";
}
cout << endl;
return 0;
}
衡量一个算法的好坏,我们往往用时间复杂度进行衡量。当然还有与之类似的空间复杂度,在目前情况下,存储空间已经不是问题了,所以空间复杂度有所弱化。归并排序当n<=1时时间复杂度为O(1),这个比较好理解,被排序的问题规模小于等于1时,问题在常数复杂度的情况下就可以完成。有点难度是当n>1时,T(n) = 2T(n/2) + O(n)。程序中有两个循环分别为:“while( step * 2 < length * 2 )”“for( leftBegin = 0; leftBegin < length;leftBegin = rightEnd )”,在最坏情况下他们最多循环n/2次,所以有2T(n/2)。在归并一趟结束后有一个内存拷贝memcpy,它要将临时空间中的所有数据复制到原来的数组中,用于下一趟归并。所以又有O(n)。常数级别我们一般不考虑,主要的是这个递归方程T(n)
= 2T(n/2) + O(n),求解可得T(n) = O(nlogn)。
有不对的地方希望大家指正