最大公约数(因数)与最小公倍数

最大公约数(因数)

欧几里得算法(辗转相除法)

int gcd(int x, int y){
	return !y ? x : gcd(y, x%y);
}

最小公倍数

最小公倍数定理

int lcm(int x, int y){
	return x / gcd(x, y) * y;
}

分解质因数法

约数个数定理

#include <bits/stdc++.h>
using namespace std;
int prime_factor(int num, vector<pair<int, int> &p_f){ /// pair中first为质因数,second为其指数;函数返回num的约数个数(约数定理得出的计算方法)
    int sum = 1;
    for(int pri=2; pri<=num; pri++){
        int exp;
        for(exp=0; num%pri==0; num/=pri, exp++);
        if(exp){
            p_f.push_back({pri, exp});
            sum *= exp+1;
        }
    }
    return sum;
}
int main(){
    int n;
    cin >> n;
    cout << prime_factor(n) << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值