题目描述
给出一个N个顶点M条边的无向无权图,顶点编号为1~N。问从顶点1开始,到其他每个点的最短路有几条。
分析
可以使用最短路。松弛的时候如果遇到没有访问过的则ans[v]=ans[u],如果遇到访问过而且dis[v]==dis[u]+1,则将方案数累计入ans[v]。
记得取模
ans的初始值为0,起点为1。
code
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<string>
#include<algorithm>
#include<stack>
#include<queue>
#include<vector>
using namespace std;
struct arr{
int x,y,w,next;
}edge[2000200];
int ans[1000200];
int ls[1000200];
int dis[1000200];
int v[1000200];
int n,m,s,t;
int edge_m;
struct cmp{
bool operator ()(int a,int b){
return dis[a]>dis[b];
}
}; //优先队列的定义。
void add(int x,int y,int w)
{
edge_m++;
edge[edge_m]=(arr){x,y,w,ls[x]};ls[x]=edge_m;
edge_m++;
edge[edge_m]=(arr){y,x,w,ls[y]};ls[y]=edge_m;
}
int main()
{
scanf("%d%d",&n,&m);
s=1;
priority_queue<int,vector<int>,cmp> Q;
memset(dis,63,sizeof(dis));
for (int i=1;i<=m;i++)
{
int x,y,w;
scanf("%d%d",&x,&y);
w=1;
add(x,y,w);
}
ans[s]=1;
dis[s]=0; v[s]=1;
Q.push(s);
for (int ii=1;ii<=n;ii++)
{
int x=Q.top();
Q.pop();
for (int j=ls[x];j;j=edge[j].next)
{
if (dis[edge[j].y]>dis[x]+edge[j].w)
{
dis[edge[j].y]=dis[x]+edge[j].w;
ans[edge[j].y]=ans[x];
if (!v[edge[j].y])
{
v[edge[j].y]=1;
Q.push(edge[j].y);
}
}
else
if (dis[edge[j].y]==dis[x]+edge[j].w)
ans[edge[j].y]=(ans[edge[j].y]+ans[x])%100003;
}
}
for (int ii=1;ii<=n;ii++)
printf("%d\n",ans[ii]%100003);
}