2020-08-07

今天练习最短路径。

1499:最短路计数

时间限制: 1000 ms 内存限制: 65536 KB 提交数: 530 通过数: 274 【题目描述】 给出一个
N 个顶点 M 条边的无向无权图,顶点编号为 1∼N。问从顶点 1 开始,到其他每个点的最短路有几条。

【输入】 给出一个 N 个顶点 M 条边的无向无权图,顶点编号为 1∼N。问从顶点 1 开始,到其他每个点的最短路有几条。

【输出】 输出 N 行,每行一个非负整数,第 i 行输出从顶点 1 到顶点 i
有多少条不同的最短路,由于答案有可能会很大,你只需要输出mod 100003后的结果即可。如果无法到达顶点 i 则输出 0。

【输入样例】 5 7 1 2 1 3 2 4 3 4 2 3 4 5 4 5 【输出样例】 1 1 1 2 4 【提示】 样例解释

1 到 5 的最短路有 4 条,分别为 2 条 1→2→4→5 和 2 条 1→3→4→5(由于 4→5 的边有 2 条)。

数据范围:

对于 20% 的数据,N≤100;

对于 60% 的数据,N≤1000;

对于 100% 的数据,1≤N≤100000,0≤M≤200000。

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<deque>
using namespace std;
const int maxn=1e5+5;
int dis[maxn],ans[maxn],vis[maxn];
#define pii pair<int,int>
#define F first
#define S second
vector< vector<pii> >G(maxn);
int v,n;
void spfa()
{
    for(int i=1;i<=v;i++)
        dis[i]=0x3f3f3f3,vis[i]=0;
    deque<int>q;
    q.push_front(1);
    ans[1]=1;
    dis[1]=0;
    int sum=0;
    while(q.size())
    {
        int k=q.front();q.pop_front();
        //cout<<k<<' '<<dis[k]<<' '<<sum<<endl;

        if(sum<dis[k]*(q.size()+1)){
            q.push_back(k);
            continue;
        }
        vis[k]=0;
        sum-=dis[k];
        for(int i=0;i<G[k].size();i++)
        {
            pii &p=G[k][i];
            if(dis[p.F]>dis[k]+p.S)
            {
                dis[p.F]=dis[k]+p.S;
                ans[p.F]=ans[k]; if(vis[p.F]==0)
            {
                if(q.size()&&dis[p.F]>dis[q.front()])
                {
                   q.push_back(p.F);
                }
                else q.push_front(p.F);
                vis[p.F]=1;
                sum+=dis[p.F];
            }
            }
            else if(dis[p.F]==dis[k]+p.S)
                ans[p.F]=(ans[p.F]+ans[k])%100003;

        }
    }
}
int main()
{
    scanf("%d%d",&v,&n);
    for(int i=1;i<=n;i++)
    {
        int x,y,z;
        scanf("%d%d",&x,&y);
        z=1;
        G[x].push_back({y,z});
        G[y].push_back({x,z});
    }
    spfa();
    for(int i=1;i<=v;i++)
        printf("%d\n",ans[i]);

}

1500:新年好

时间限制: 1000 ms 内存限制: 65536 KB 提交数: 463 通过数: 262 【题目描述】
原题来自:CQOI 2005

重庆城里有 n 个车站,m
条双向公路连接其中的某些车站。每两个车站最多用一条公路连接,从任何一个车站出发都可以经过一条或者多条公路到达其他车站,但不同的路径需要花费的时间可能不同。在一条路径上花费的时间等于路径上所有公路需要的时间之和。

佳佳的家在车站 1,他有五个亲戚,分别住在车站
a,b,c,d,e。过年了,他需要从自己的家出发,拜访每个亲戚(顺序任意),给他们送去节日的祝福。怎样走,才需要最少的时间?

【输入】 第一行:n,m 为车站数目和公路的数目。

第二行:a,b,c,d,e 为五个亲戚所在车站编号。

以下 m 行,每行三个整数 x,y,t,为公路连接的两个车站编号和时间。

【输出】 输出仅一行,包含一个整数 T,为最少的总时间。

【输入样例】 6 6 2 3 4 5 6 1 2 8 2 3 3 3 4 4 4 5 5 5 6 2 1 6 7 【输出样例】 21
【提示】 数据范围:

对于全部数据,1≤n≤50000,1≤m≤105,1<a,b,c,d,e≤n,1≤x,y≤n,1≤t≤100。

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<deque>
using namespace std;
const int maxn=1e5+5;
int dis[7][maxn],ans[maxn],vis[maxn],place[7],vp[7];
#define pii pair<int,int>
#define F first
#define S second
#define DEBUG(arr,t)  \
for(int i=1;i<=t;i++) \
{printf("%d",arr[i]);putchar(' ');} \
putchar('\n');
vector< vector<pii> >G(maxn);
int v,n;
void spfa(int j,int be)
{
    for(int i=1; i<=v; i++)
        dis[j][i]=0x3f3f3f3f,vis[i]=0;
      //  printf("???????\n");
    //DEBUG(dis[j],v);
    deque<int>q;
    q.push_front(be);
    dis[j][be]=0;
    int sum=0;
    while(q.size())
    {
        int k=q.front();
        q.pop_front();
        if(sum<dis[j][k]*(q.size()+1))
        {
            q.push_back(k);
            continue;
        }
        vis[k]=0;
        sum-=dis[j][k];
        for(int i=0; i<G[k].size(); i++)
        {
            pii &p=G[k][i];
            if(dis[j][p.F]>dis[j][k]+p.S)
            {
                dis[j][p.F]=dis[j][k]+p.S;
                if(vis[p.F]==0)
                {
                    if(q.size()&&dis[j][p.F]>dis[j][q.front()])
                    {
                        q.push_back(p.F);
                    }
                    else
                        q.push_front(p.F);
                    vis[p.F]=1;
                    sum+=dis[j][p.F];
                }
            }

        }
    }
   /*for(int i=1;i<=v;i++)
        cout<<dis[j][i]<<' ';
    cout<<endl;*/

}
int answer=0x3f3f3f3f;
void dfs(int be,int n,int len)
{
   // printf("%d %d %d\n",be,n,len);
    if(n==5)
    {
        answer=min(answer,len);
        return ;
    }
    if(len>answer)
        return ;
    for(int i=1; i<=6; i++)
    {
        if(!vp[i])
        {
            vp[i]=1;
            dfs(i,n+1,len+dis[be][place[i]]);
            vp[i]=0;
        }
    }
}
int main()
{
    scanf("%d%d",&v,&n);
    place[1]=1;
    for(int i=1; i<=5; i++)
        scanf("%d",&place[i+1]);
    for(int i=1; i<=n; i++)
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        G[x].push_back({y,z});
        G[y].push_back({x,z});
    }
    for(int i=1; i<=6; i++)
        {spfa(i,place[i]);}
    vp[1]=1;
    dfs(1,0,0);
    printf("%d\n",answer);

}
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页