使用Python中的cvxpy库解整数规划问题

Python的scipy库中提供了解简单线性或非线性规划问题,但是不能求解如背包问题的0-1规划问题,或整数规划问题,混合整数规划问题,CVXPY库可以求解以上类型的问题。本文将使用cvxpy库求解整数规划问题。如果你需要使用cvxpy求解背包 问题或混合整数规划问题可以直接在cvxpy的官方文档上查询相关的例子。

Cvxpy库官方提供算例

本文求解的整数规划问题如下:

Objective: min:  Z = ∑ i = 0 5 x i \text{min: }Z = \sum_{i=0}^5x_i min: Z=i=05xi

Constrains: 0 ≤ x 1 ≤ 25 0 ≤ x 2 ≤ 12 0 ≤ x 3 ≤ 12.5 0 ≤ x 4 ≤ 2 0 ≤ x 5 ≤ 0 x 1 ≤ 10 x 2 ≤ 40 x 3 ≤ 90 x 4 ≤ 80 x 5 ≤ 0 − 1 ∗ x 1 ≤ 40 − 0.9 ∗ x 1 − x 2 ≤ 2 − 0.8 x 1 − (

### 如何安装 MOSEK 求解器以便与 CVXPY 一起使用 #### 准备工作 为了使 MOSEK 决器能够顺利配合 CVXPY 使用,需先获取并激活 MOSEK 许可证。访问官方网站下载对应版本的 MOSEK 安装包,并按照指引完成许可证申请流程[^3]。 #### 配置 MATLAB 或 Python 环境中的 MOSEK 对于希望在 Python 中利用 MOSEK 的用户来说,在获得合法授权之后,应当将许可证放置于个人用户的根目录之下;接着设置相应的环境变量以确保系统能识别该许可的存在。针对不同操作系统具体操作有所差异: - **Windows 用户**:通常情况下只需把许可证文件放到 `C:\Users\<YourUsername>\` 文件夹内即可被自动检测到。 - 对于 Python 开发者而言,则可通过命令提示符进入 Mosek 提供的 Python 接口所在的文件夹位置(例如 `D:\CQUniversity\凸优化\cvx_matlab\mosek\10.0\tools\platform\win64x86\python\3`),随后依次执行如下两条指令来构建和安装此接口: ```bash python setup.py build python setup.py install ``` #### 测试安装情况 通过调用特定工具如 mosekdiag 来验证 MOSEK 是否已经成功部署以及能否正常运作。 #### 整合至 CVXPY 当确认 MOSEK 已经正确无误地集成到了开发环境中后,便可以在编写涉及最优化问题求解的应用程序时指定采用 MOSEK 作为背后的计算引擎了。此时应该不会遇到因缺乏有效 license 而导致的功能受限状况[^1]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值