题目描述
形如 2 P − 1 2^{P}-1 2P−1的素数称为麦森数,这时 P P P一定也是个素数。但反过来不一定,即如果 P P P是个素数, 2 P − 1 2^{P}-1 2P−1不一定也是素数。到 1998 1998 1998年底,人们已找到了 37 37 37个麦森数。最大的一个是 P = 3021377 P=3021377 P=3021377,它有 909526 909526 909526位。麦森数有许多重要应用,它与完全数密切相关。
任务:从文件中输入 P P P( 1000 < P < 3100000 1000<P<3100000 1000<P<3100000),计算 2 P − 1 2^{P}-1 2P−1的位数和最后 500 500 500位数字(用十进制高精度数表示)
输入格式
文件中只包含一个整数 P P P( 1000 < P < 3100000 1000<P<3100000 1000<P<3100000)
输出格式
第一行:十进制高精度数 2 P − 1 2^{P}-1 2P−1的位数。
第 2 − 11 2-11 2−11行:十进制高精度数 2 P − 1 2^{P}-1 2P−1的最后 500 500 500位数字。(每行输出 50 50 50位,共输出 10 10 10行,不足 500 500 500位时高位补 0 0 0)
不必验证 2 P − 1 2^{P}-1 2P−1与 P P P是否为素数。
输入输出样例
输入 #1 复制
1279
输出 #1 复制
386
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000104079321946643990819252403273640855
38615262247266704805319112350403608059673360298012
23944173232418484242161395428100779138356624832346
49081399066056773207629241295093892203457731833496
61583550472959420547689811211693677147548478866962
50138443826029173234888531116082853841658502825560
46662248318909188018470682222031405210266984354887
32958028878050869736186900714720710555703168729087
思路
对于第一问,我们要求 2 P − 1 2^P-1 2P−1的位数,实质上就是求 2 P 2^P 2P的位数,因为 2 P − 1 2^P-1 2P−1的末尾数不可能是 0 0 0,那么怎么求 2 P 2^P 2P的位数呢
因为 1 0 x 10^x 10x的位数就是 f l o o r ( x + 1 ) floor(x+1) floor(x+1)
那么,只要将底数 2 2 2改成 10 10 10就可以算了。
因为 1 0 l o g 10 2 = 2 10^{log_{10}2}=2 10log102=2
所以 2 P = 1 0 l o g 10 2 P 2^P={10^{log_{10}2}}^P 2P=10log102P
那么 2 P 2^P 2P的位数就是 l o g 10 2 × P + 1 log_{10}2\times P+1 log102×P+1
第一问就可以解决了。
对于第二问,直接高精度+快速幂
代码
#include<bits/stdc++.h>
using namespace std;
int p;
int cnt[1001],ans[1001];
int t[1001];
void t1(){
memset(t,0,sizeof(t));
for(int i=1;i<=500;i++){
for(int j=1;j<=500;j++){
t[i+j-1]+=cnt[i]*ans[j];
}
}
memset(ans,0,sizeof(ans));//清空
for(int i=1;i<=500;i++){
t[i+1]+=t[i]/10;
t[i]%=10;
ans[i]=t[i];
}
}
void t2(){
memset(t,0,sizeof(t));
for(int i=1;i<=500;i++){
for(int j=1;j<=500;j++){
t[i+j-1]+=cnt[i]*cnt[j];
}
}
memset(cnt,0,sizeof(cnt));//清空
for(int i=1;i<=500;i++){//单独处理进位
t[i+1]+=t[i]/10;
t[i]%=10;
cnt[i]=t[i];
}
}
int main(){
scanf("%d",&p);
printf("%d",int(log10(2)*p+1));//第一问
cnt[1]=2;//初值2^1
ans[1]=1;//初值为1,因为要乘起来的
while(p){//快速幂模板
if(p&1)t1();
t2();
p>>=1;
}
ans[1]--;
for(int i=500;i>=1;i--){
if(i%50==0)printf("\n");//50位一行
printf("%d",ans[i]);
}
return 0;
}