洛谷P1045麦森数题解--zhengjun

题目描述

形如 2 P − 1 2^{P}-1 2P1的素数称为麦森数,这时 P P P一定也是个素数。但反过来不一定,即如果 P P P是个素数, 2 P − 1 2^{P}-1 2P1不一定也是素数。到 1998 1998 1998年底,人们已找到了 37 37 37个麦森数。最大的一个是 P = 3021377 P=3021377 P=3021377,它有 909526 909526 909526位。麦森数有许多重要应用,它与完全数密切相关。

任务:从文件中输入 P P P 1000 < P < 3100000 1000<P<3100000 1000<P<3100000),计算 2 P − 1 2^{P}-1 2P1的位数和最后 500 500 500位数字(用十进制高精度数表示)

输入格式

文件中只包含一个整数 P P P 1000 < P < 3100000 1000<P<3100000 1000<P<3100000

输出格式

第一行:十进制高精度数 2 P − 1 2^{P}-1 2P1的位数。

2 − 11 2-11 211行:十进制高精度数 2 P − 1 2^{P}-1 2P1的最后 500 500 500位数字。(每行输出 50 50 50位,共输出 10 10 10行,不足 500 500 500位时高位补 0 0 0

不必验证 2 P − 1 2^{P}-1 2P1 P P P是否为素数。

输入输出样例
输入 #1 复制
1279
输出 #1 复制
386
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000104079321946643990819252403273640855
38615262247266704805319112350403608059673360298012
23944173232418484242161395428100779138356624832346
49081399066056773207629241295093892203457731833496
61583550472959420547689811211693677147548478866962
50138443826029173234888531116082853841658502825560
46662248318909188018470682222031405210266984354887
32958028878050869736186900714720710555703168729087

思路

对于第一问,我们要求 2 P − 1 2^P-1 2P1的位数,实质上就是求 2 P 2^P 2P的位数,因为 2 P − 1 2^P-1 2P1的末尾数不可能是 0 0 0,那么怎么求 2 P 2^P 2P的位数呢

因为 1 0 x 10^x 10x的位数就是 f l o o r ( x + 1 ) floor(x+1) floor(x+1)

那么,只要将底数 2 2 2改成 10 10 10就可以算了。

因为 1 0 l o g 10 2 = 2 10^{log_{10}2}=2 10log102=2

所以 2 P = 1 0 l o g 10 2 P 2^P={10^{log_{10}2}}^P 2P=10log102P

那么 2 P 2^P 2P的位数就是 l o g 10 2 × P + 1 log_{10}2\times P+1 log102×P+1

第一问就可以解决了。

对于第二问,直接高精度+快速幂

参见快速幂–zhengjun高精度–zhengjun

代码

#include<bits/stdc++.h>
using namespace std;
int p;
int cnt[1001],ans[1001];
int t[1001];
void t1(){
	memset(t,0,sizeof(t));
	for(int i=1;i<=500;i++){
		for(int j=1;j<=500;j++){
			t[i+j-1]+=cnt[i]*ans[j];
		}
	}
	memset(ans,0,sizeof(ans));//清空
	for(int i=1;i<=500;i++){
		t[i+1]+=t[i]/10;
		t[i]%=10;
		ans[i]=t[i];
	}
}
void t2(){
	memset(t,0,sizeof(t));
	for(int i=1;i<=500;i++){
		for(int j=1;j<=500;j++){
			t[i+j-1]+=cnt[i]*cnt[j];
		}
	}
	memset(cnt,0,sizeof(cnt));//清空
	for(int i=1;i<=500;i++){//单独处理进位
		t[i+1]+=t[i]/10;
		t[i]%=10;
		cnt[i]=t[i];
	}
}
int main(){
	scanf("%d",&p);
	printf("%d",int(log10(2)*p+1));//第一问
	cnt[1]=2;//初值2^1
	ans[1]=1;//初值为1,因为要乘起来的
	while(p){//快速幂模板
		if(p&1)t1();
		t2();
		p>>=1;
	}
	ans[1]--;
	for(int i=500;i>=1;i--){
		if(i%50==0)printf("\n");//50位一行
		printf("%d",ans[i]);
	}
	return 0;
}

谢谢–zhengjun

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A_zjzj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值