从kaggle平台下载数据(不翻墙,很简单,5分钟)

文章讲述了作者在进行课程设计时遇到的挑战,即在Kaggle下载数据时需要注册但无法成功。解决方案是使用QQ邮箱进行注册,并通过手机热点解决网络问题实现数据下载。
摘要由CSDN通过智能技术生成

我的课程设计需要从kaggle下载数据,找到后又让注册,我总是注册不成功。

寻找到一以下方法:

02-账号注册_哔哩哔哩_bilibili

有QQ邮箱就能成功注册

下载数据时我点击download

 发现打不开:

这是网络问题,直接开手机热点,电脑使用手机热点网络就能直接下载成功

  • 10
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
AliDMCompetition 阿里巴巴大数据竞赛(http://102.alibaba.com/competition/addDiscovery/index.htm ) 数据说明 提供的原始文件有大约4M左右,涉及1千多天猫用户,几千个天猫品牌,总共10万多条的行为记录。 用户4种行为类型(Type)对应代码分别为: 点击:0 购买:1 收藏:2 购物车:3 提交格式 参赛者将预测的用户存入文本文件中,格式如下: user_id \t brand_id , brand_id , brand_id \n 上传的结果文件名字不限(20字以内),文件必须为txt格式。 预测结果 真实购买记录一共有3526条 TODO 注意调整正负样本比例 在LR的基础上做RawLR。按照天猫内部的思路来。 在LR的基础上做MRLR,样本提取要更加合理。 在UserCF和ItemCF上加上时间因子的影响。 利用UserCF做好的用户聚类、ItemCF做好的品牌聚类来做细化的LR,或者在聚类 上做LFM 在ItemCF的思路上挖掘频繁项集/购买模式,如购买品牌A和商品后往往会购买 品牌B的商品 LFM 数据集特征 某一商品在购买前的一段时间内会出现大量点击次数,购买完成后的一段时间内也会出现大量点击次数 用户在本月有过行为的商品极少出现在下个月的购买列表里 根据观察推断:用户浏览商品的行为可分为两类: 无目的浏览,可能会在浏览过程中对某些中意的商品进行购买,数据表现为有大量点击次数<=2的行为记录,但很少有购买行为 有目的的查找商品,可能是事先有需求的情况,数据表现为一段时间内点击商品数很少, 但点击过的商品大多数都进行了购买 参考论文 See https://www.google.com.hk/search?q=data+mining+time+series&ie=utf-8&oe=utf-8&aq=t for more. Chapter 1 MINING TIME SERIES DATA - ResearchGate 模型列表 LR(model=LinearSVC(C=10, loss='l1'), alpha=0.7, degree=1) | TOTAL VISITED BOUGHT FAVO CART NEW | Pred # 1438 1436 626 71 12 | % 100% 99.861% 43.533% 4.937% 0.834% | Real # 1311 250 89 10 1 | % 100% 19.069% 6.789% 0.763% 0.076% Hit # 76 Precision 5.285118% Recall 5.797101% F1 Score 5.529283% LR(model=LogisticRegression(penalty='l1'), alpha=0.7, degree=1) | TOTAL VISITED BOUGHT FAVO CART NEW | Pred # 1472 1470 615 68 14 | % 100% 99.864% 41.780% 4.620% 0.951% | Real # 1311 250 89 10 1 | % 100% 19.069% 6.789% 0.763% 0.076% Hit # 74 Precision 5.027174% Recall 5.644546% F1 Score 5.318002% 这个模型在数据变成2次后,Precision ~ 16%,同时F1 ~ 3% LR(model=Perceptron(penalty='l1'), alpha=0.7, degree=1) | TOTAL VISITED BOUGHT FAVO CART NEW | Pred # 3145 3140 1023 130 26 | % 100% 99.841% 32.528% 4.134% 0.827% | Real # 1311 250 89 10 1 | % 100% 19.069% 6.789% 0.763% 0.076% Hit # 113 Precis

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

常神农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值