C: connnect
题意:
给n个点,并且每个点有三个值,x,y,z,连接两点u,v之间的花费为MIN(|Xu−Xv|,|Yu−Yv|,|Zu−Zv|) ,求将n个点连起来的最小花费为多少。
题解:
其实就是一道最小生成树的题,用kluscal算法来做,和普通的最小生成树的差别在于任意两点之间有三个距离值,在用kluscal之前要先处理一下两点之间的距离。
首先想想kluscal这个算法,是对两点之间的边进行排序然后按照从小到大的顺序来取边并判断边是否需要。根据这个思路,首先用一个结构体数组,将每个点的序号以及x,y,z的值存下来,然后分别以x,y,z的大小进行三次排序,每次排序之后,相邻下标的两点的x(或y,或z)的差值就是这两点的最小的距离,然后就可以得到3n-3条边,然后就根据这3n-3条边用kluscal算法就可以得到最小生成树了。
#include<bits/stdc++.h>
#define ll long long
#define M 200005
using namespace std;
int n;
struct node1
{
ll x,y,z,v;
}point[M];
struct node2
{
ll from,to,dis;
}edge[3*M];
int parent[M];
int find(int x)
{
int r=x;
while(r!=parent[r])
r=parent[r];
int i=x,j;
while(i!=r)
{
j=parent[i];
parent[i]=r;
i=j;
}
return r;
}
bool cmp1(node1 a,node1 b)
{
return a.x<b.x;
}
bool cmp2(node1 a,node1 b)
{
return a.y<b.y;
}
bool cmp3(node1 a,node1 b)
{
return a.z<b.z;
}
bool cmp4(node2 a,node2 b)
{
return a.dis<b.dis;
}
ll Kruskal()
{
ll ans=0;
sort(edge+1,edge+1+3*n-3,cmp4);
int cnt=0;
for(int i=1;i<=3*n-3;i++)
{
if(find(edge[i].from)!=find(edge[i].to))
{
parent[find(edge[i].from)]=find(edge[i].to);
ans+=edge[i].dis;
cnt++;
}
if(cnt==n) break;
}
return ans;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
parent[i]=i;
point[i].v=i;
scanf("%lld %lld %lld",&point[i].x,&point[i].y,&point[i].z);
}
sort(point+1,point+1+n,cmp1);
for(int i=1;i<=n-1;i++)
{
edge[i].dis=point[i+1].x-point[i].x;
edge[i].from=point[i].v;
edge[i].to=point[i+1].v;
}
sort(point+1,point+1+n,cmp2);
for(int i=1;i<=n-1;i++)
{
edge[n-1+i].dis=point[i+1].y-point[i].y;
edge[n-1+i].from=point[i].v;
edge[n-1+i].to=point[i+1].v;
}
sort(point+1,point+1+n,cmp3);
for(int i=1;i<=n-1;i++)
{
edge[2*n-2+i].dis=point[i+1].z-point[i].z;
edge[2*n-2+i].from=point[i].v;
edge[2*n-2+i].to=point[i+1].v;
}
ll ans=Kruskal();
printf("%lld",ans);
return 0;
}