bzoj3676【APIO2014】回文串

APIO2014回文串问题解析
本文详细解析了APIO2014回文串问题,提供了两种解决方案:一是结合Manacher算法与后缀数组的方法,二是利用回文自动机解决。通过对样例的分析和代码实现细节的探讨,帮助读者理解如何高效地找到字符串中具有最大出现值的回文子串。

3676: [Apio2014]回文串 

Time Limit: 20 Sec   Memory Limit: 128 MB
Submit: 1524   Solved: 637
[ Submit][ Status][ Discuss]

Description

考虑一个只包含小写拉丁字母的字符串s。我们定义s的一个子串t的“出 
现值”为t在s中的出现次数乘以t的长度。请你求出s的所有回文子串中的最 
大出现值。 

Input

输入只有一行,为一个只包含小写字母(a -z)的非空字符串s。 

Output


输出一个整数,为逝查回文子串的最大出现值。 

Sample Input

【样例输入l】
abacaba

【样例输入2]
www

Sample Output

【样例输出l】
7

【样例输出2]
4

HINT



一个串是回文的,当且仅当它从左到右读和从右到左读完全一样。 

在第一个样例中,回文子串有7个:a,b,c,aba,aca,bacab,abacaba,其中: 

● a出现4次,其出现值为4:1:1=4 

● b出现2次,其出现值为2:1:1=2 

● c出现1次,其出现值为l:1:l=l 

● aba出现2次,其出现值为2:1:3=6 

● aca出现1次,其出现值为1=1:3=3 

●bacab出现1次,其出现值为1:1:5=5 

● abacaba出现1次,其出现值为1:1:7=7 

故最大回文子串出现值为7。 

【数据规模与评分】 

数据满足1≤字符串长度≤300000。




方法一:manacher+后缀数组

这里运用manacher一个重要的性质:只有使mx值变大的回文串,才是和之前都不同的回文串,否则一定可以对称得到。

所以本质上不同的回文串个数是O(n)的。

然后对于每一个回文串,在后缀数组中二分,看出现多少次。

//后缀数组+manacher 
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define ull unsigned long long
#define maxn 600005
#define inf 1000000000
using namespace std;
int n,a[maxn],c[maxn],x[maxn],y[maxn],sa[maxn],rnk[maxn],h[maxn],p[maxn],f[maxn][20],lg2[maxn];
ll ans;
char s[maxn];
inline void build_sa(int n,int m)
{
	memset(c,0,sizeof(c));
	F(i,1,n) c[x[i]=a[i]]++;
	F(i,2,m) c[i]+=c[i-1];
	D(i,n,1) sa[c[x[i]]--]=i;
	for(int k=1;k<=n;k<<=1)
	{
		int p=0;
		F(i,n-k+1,n) y[++p]=i;
		F(i,1,n) if (sa[i]>k) y[++p]=sa[i]-k;
		memset(c,0,sizeof(c));
		F(i,1,n) c[x[y[i]]]++;
		F(i,2,m) c[i]+=c[i-1];
		D(i,n,1) sa[c[x[y[i]]]--]=y[i];
		swap(x,y);
		p=1;x[sa[1]]=1;
		F(i,2,n) x[sa[i]]=y[sa[i-1]]==y[sa[i]]&&y[sa[i-1]+k]==y[sa[i]+k]?p:++p;
		if (p>=n) break;
		m=p;
	}
}
inline void get_h()
{
	int tmp=0;
	F(i,1,n) rnk[sa[i]]=i;
	F(i,1,n)
	{
		if (tmp) tmp--;
		int j=sa[rnk[i]-1];
		while (s[i+tmp]==s[j+tmp]) tmp++;
		h[rnk[i]]=tmp;
	}
}
inline int rmq(int l,int r)
{
	if (l>r) return inf;
	int t=lg2[r-l+1];
	return min(f[l][t],f[r-(1<<t)+1][t]);
}
inline void calc(int x,int y)
{
	x=(x+1)>>1;y>>=1;
	int pos=rnk[x],len=y-x+1;
	int l,r,mid,p1=pos,p2=pos;
	l=1;r=pos;
	while (l<=r)
	{
		mid=(l+r)>>1;
		if (rmq(mid+1,pos)>=len) p1=mid,r=mid-1;
		else l=mid+1;
	}
	l=pos;r=n;
	while (l<=r)
	{
		mid=(l+r)>>1;
		if (rmq(pos+1,mid)>=len) p2=mid,l=mid+1;
		else r=mid-1;
	}
	ans=max(ans,(ll)len*(p2-p1+1));
}
inline void manacher()
{
	int mx=0,id=0;
	F(i,1,n)
	{
		if (mx>i) p[i]=min(p[id*2-i],mx-i+1);
		else p[i]=1;
		while (s[i+p[i]]==s[i-p[i]])
		{
			if (i+p[i]>mx) calc(i-p[i],i+p[i]);
			p[i]++;
		}
		if (i+p[i]-1>mx) mx=i+p[i]-1,id=i;
	}
}
int main()
{
	scanf("%s",s+1);
	n=strlen(s+1);
	F(i,1,n) a[i]=s[i]-'a'+1;
	build_sa(n,26);
	get_h();
	F(i,2,n) lg2[i]=lg2[i>>1]+1;
	F(i,1,n) f[i][0]=h[i];
	for(int j=1;(1<<j)<=n;j++) F(i,1,n-(1<<j)+1) f[i][j]=min(f[i][j-1],f[i+(1<<(j-1))][j-1]);
	s[0]='$';s[1]='#';s[(n+1)<<1]='%';
	F(i,1,n) s[i<<1]=a[i]+'a'-1,s[i<<1|1]='#';
	n=n<<1|1;
	manacher();
	printf("%lld\n",ans);
}


方法二:回文自动机

回文自动机裸题

//回文自动机 
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define maxn 300005
using namespace std;
int n;
ll ans;
struct pam
{
	int cnt,last;
	int next[maxn][26],fail[maxn],l[maxn],size[maxn];
	char ch[maxn];
	pam(){cnt=1;fail[0]=fail[1]=1;l[1]=-1;}
	void add(int c,int n)
	{
		int p=last;
		while (ch[n-l[p]-1]!=ch[n]) p=fail[p];
		if (!next[p][c])
		{
			int now=++cnt,tmp=fail[p];
			l[now]=l[p]+2;
			while (ch[n-l[tmp]-1]!=ch[n]) tmp=fail[tmp];
			fail[now]=next[tmp][c];next[p][c]=now;
		}
		last=next[p][c];size[last]++;
	}
	void count()
	{
		D(i,cnt,1)
		{
			size[fail[i]]+=size[i];
			ans=max(ans,(ll)size[i]*l[i]);
		}
	}
}p;
int main()
{
	scanf("%s",p.ch+1);
	n=strlen(p.ch+1);
	F(i,1,n) p.add(p.ch[i]-'a',i);
	p.count();
	printf("%lld\n",ans);
	return 0;
}


### BZOJ1461 字符串匹配 题解 针对BZOJ1461字符串匹配问题,解决方法涉及到了KMP算法以及树状数组的应用。对于此类问题,朴素的算法无法满足时间效率的要求,因为其复杂度可能高达O(ML²),其中M代表模式串的数量,L为平均长度[^2]。 为了提高效率,在这个问题中采用了更先进的技术组合——即利用KMP算法来预处理模式串,并通过构建失配树(也称为失败指针),使得可以在主串上高效地滑动窗口并检测多个模式串的存在情况。具体来说: - **前缀函数与KMP准备阶段**:先对每一个给定的模式串执行一次KMP算法中的pre_kmp操作,得到各个模式串对应的next数组。 - **建立失配树结构**:基于所有模式串共同构成的一棵Trie树基础上进一步扩展成带有失配链接指向的AC自动机形式;当遇到某个节点不存在对应字符转移路径时,则沿用该处失配链路直至找到合适的目标或者回到根部重新开始尝试其他分支。 - **查询过程**:遍历整个待查文本序列的同时维护当前状态处于哪一层级下的哪个子结点之中,每当成功匹配到完整的单词就更新计数值至相应位置上的f_i变量里去记录下这一事实。 下面是简化版Python代码片段用于说明上述逻辑框架: ```python from collections import defaultdict def build_ac_automaton(patterns): trie = {} fail = [None]*len(patterns) # 构建 Trie 树 for i,pattern in enumerate(patterns): node = trie for char in pattern: if char not in node: node[char]={} node=node[char] node['#']=i queue=[trie] while queue: current=queue.pop() for key,value in list(current.items()): if isinstance(value,int):continue if key=='#': continue parent=current[key] p=fail[current is trie and 0 or id(current)] while True: next_p=p and p.get(key,None) if next_p:break elif p==0: value['fail']=trie break else:p=fail[id(p)] if 'fail'not in value:value['fail']=next_p queue.append(parent) return trie,fail def solve(text, patterns): n=len(text) m=len(patterns) f=[defaultdict(int)for _in range(n)] ac_trie,_=build_ac_automaton(patterns) state=ac_trie for idx,char in enumerate(text+'$',start=-1): while True: trans=state.get(char,state.get('#',{}).get('fail')) if trans!=None: state=trans break elif '#'in state: state[state['#']['fail']] else: state=ac_trie cur_state=state while cur_state!={}and'#'in cur_state: matched_pattern_idx=cur_state['#'] f[idx][matched_pattern_idx]+=1 cur_state=cur_state['fail'] result=[] for i in range(len(f)-1): row=list(f[i].values()) if any(row): result.extend([sum((row[:j+1]))for j,x in enumerate(row[::-1])if x>0]) return sum(result) patterns=["ab","bc"] text="abc" print(solve(text,text)) #[^4] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值