洛谷 P3327 [SDOI2015]约数个数和 (莫比乌斯反演)

该博客详细介绍了洛谷P3327题目,涉及数论问题和莫比乌斯反演。博主解释了如何计算两个数的乘积的约数个数之和,并提供了数论中的关键结论和证明思路。文章通过分析题目,阐述了如何利用莫比乌斯反演简化计算,还提及了一种利用约数个数前缀和的方法。最后,博主给出了代码实现。
摘要由CSDN通过智能技术生成

题目描述

d(x) d ( x ) x x 的约数个数,给定 N M M ,求 i = 1 N j = 1 M d ( i j )


输入输出格式

输入格式:
输入文件包含多组测试数据。第一行,一个整数T,表示测试数据的组数。接下来的T行,每行两个整数N、M。

输出格式:
T行,每行一个整数,表示你所求的答案。


输入输出样例

输入样例#1:

2
7 4
5 6

输出样例#1:

110
121


说明

1<=N, M<=50000

1<=T<=50000


题目分析

数论题对我这种智障来说就是要命的。这题我想了一会还是没有想出来。

某Cla口中的水题对蒟蒻我来说都是难题,所谓的好题就是我根本不会做的题。。。

本题必须用到的结论:

d(ij)=x|iy|j[(x,y)=1] d ( i j ) = ∑ x | i ∑ y | j [ ( x , y ) = 1 ]

证明很简单:

将一个数唯一分解为 pk11pk22pk33...pknn p 1 k 1 p 2 k 2 p 3 k 3 . . . p n k n ,则其约数个数为 (k1+1)(k2+1)(k3+1)...(kn+1) ( k 1 + 1 ) ( k 2 + 1 ) ( k 3 + 1 ) . . . ( k n + 1 ) 。因为对于任意 ij i ≠ j (pi,pj)=1 ( p i , p j ) = 1

然后考虑一个质数 p p d ( i j ) 的贡献。假设 i i 的质因数分解中有 k p p j 的质因数分解中有 q q p ,那么对 d(

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值