链接
http://poj.org/problem?id=3691
题解
题意:给定N(N <= 50)个长度不超过20的模式串,再给定一个长度为M(M <= 1000)的目标串S,求在目标串S上最少改变多少字符,可以使得它不包含任何的模式串(所有串只有ACGT四种字符)。
由于我的AC自动机很菜,平时只会写trie图,于是我就又写了一道trie图+dp...
比较简单的DP,首先记录所有状态是不行的,我们发现若是和模式串无关的状态是一样的,对模式串开个AC自动机,建出trie图,将无用重复的状态全部丢进根里。
然后从根往下走,记dp[i][j]表示当前为第i位,状态为j(此状态就是在AC机走到的节点),一边匹配一边计算答案。枚举当前节点的儿子v,然后如果没有尾标记,则有dp[i+1][v] = min(dp[i+1][v], dp[i][j]+T),其中当v代表的字符和s[i]相同时T=0,否则T=1。
一开始所有状态不可达为INF,dp[0][0] = 0,dp[len][i]的最小值就是答案。
ps:一开始我想着根据病毒串来转移,但这样是不行的。因为在AC上要匹配才能确定状态,匹配就是相同,而不是不同。能转移到的非病毒串的状态的答案是确定的,我们只需要避免转移到病毒串即可。
代码
#include <cstdio>
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#define maxn 55
#define maxl 25
#define maxll 1010
#define INF 1000000000
using namespace std;
int n, cnt;
char x[maxl], s[maxll];
struct AC{
AC *son[4], *fail;
void Clear(){
for(int i = 0; i < 4; i++)
son[i] = NULL;
id = cnt;
vis = 0;
}
int id, vis;
}*Root, Node[maxn*maxl], *q[maxn*maxl];
AC *NewTnode(){
Node[cnt].Clear();
return Node+cnt++;
}
void AC_Insert(){
AC *now = Root;
int len = strlen(x);
for(int i = 0; i < len; i++){
int pos;
if(x[i] == 'A') pos = 0;
else if(x[i] == 'G') pos = 1;
else if(x[i] == 'C') pos = 2;
else pos = 3;
if(!now->son[pos]) now->son[pos] = NewTnode();
now = now->son[pos];
}
now->vis = 1;
}
void AC_BuildFail(){
AC *now = Root;
Root->fail = NULL;
int head = 0, tail = 0;
q[0] = Root;
while(head <= tail){
now = q[head++];
for(int i = 0; i < 4; i++){
if(now->son[i]){
q[++tail] = now->son[i];
now->son[i]->fail = (now == Root) ? Root : now->fail->son[i];
now->son[i]->vis |= now->son[i]->fail->vis;
}
else now->son[i] = (now == Root) ? Root : now->fail->son[i];
}
}
}
int Case, dp[maxll][maxn*maxl], ans;
int main(){
while(~ scanf("%d", &n) && n){
ans = INF;
cnt = 0;
Case ++;
Root = NewTnode();
for(int i = 1; i <= n; i++){
scanf("%s", x);
AC_Insert();
}
AC_BuildFail();
scanf("%s", s);
int len = strlen(s);
for(int i = 0; i <= len; i++)
for(int j = 0; j < cnt; j++)
dp[i][j] = INF;
dp[0][0] = 0;
for(int i = 0; i < len; i++){
int pos;
if(s[i] == 'A') pos = 0;
else if(s[i] == 'G') pos = 1;
else if(s[i] == 'C') pos = 2;
else pos = 3;
for(int j = 0; j < cnt; j++){
if(dp[i][j] == INF) continue;
for(int k = 0; k < 4; k++){
int v = Node[j].son[k]->id, d = Node[j].son[k]->vis;
if(d) continue;
dp[i+1][v] = min(dp[i+1][v], dp[i][j] + (k != pos));
}
}
}
for(int i = 0; i < cnt; i++)
ans = min(ans, dp[len][i]);
if(ans == INF) ans = -1;
printf("Case %d: %d\n", Case, ans);
}
return 0;
}