1.tanspose函数的理解:
首先我们把一个三维矩阵理解为d,r,c 分表代表dim row col三维。
首先我通过numpy.arange(60)创建一个len=60的一维矩阵,并通过reshape函数对其进行重塑。
其次,我们将这个三维数据想象成一个空间几何。如以下图
然后我们通过transpose()函数改变序列,transpose(index_0,index_1....index_n)对其进行序列变化,在调用该函数后,首先从D开始读,因为(2,1,0)中1是r,所以读出来的就是
[
[1,21,41],[6,26,46],[11,31,51],[16,36,56],
[2,22,42].....
]
最后,我们总结出,该函数就是通过改变序列index获得目标矩阵。
print("transpose.3-dim")
x3 = np.arange(60)
x3 = np.reshape(x3,(3,4,5))
print(x3)
print("transpose(2,1,0)")
# 当transpose()不传任何参数时,作用与T属性类似,arr.T即可完成数组arr的转置
x3 = x3.transpose(2,1,0)
print(x3)
#以下方法也可以创建三维数组
#np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
输出结果:
transpose.3-dim
[[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]]
[[20 21 22 23 24]
[25 26 27 28 29]
[30 31 32 33 34]
[35 36 37 38 39]]
[[40 41 42 43 44]
[45 46 47 48 49]
[50 51 52 53 54]
[55 56 57 58 59]]]
transpose(2,1,0)
[[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
[[ 1 21 41]
[ 6 26 46]
[11 31 51]
[16 36 56]]
[[ 2 22 42]
[ 7 27 47]
[12 32 52]
[17 37 57]]
[[ 3 23 43]
[ 8 28 48]
[13 33 53]
[18 38 58]]
[[ 4 24 44]
[ 9 29 49]
[14 34 54]
[19 39 59]]]
Process finished with exit code 0