Numpy部分函数解析

1.tanspose函数的理解:

首先我们把一个三维矩阵理解为d,r,c 分表代表dim row col三维。

首先我通过numpy.arange(60)创建一个len=60的一维矩阵,并通过reshape函数对其进行重塑。

其次,我们将这个三维数据想象成一个空间几何。如以下图

 然后我们通过transpose()函数改变序列,transpose(index_0,index_1....index_n)对其进行序列变化,在调用该函数后,首先从D开始读,因为(2,1,0)中1是r,所以读出来的就是

[

        [1,21,41],[6,26,46],[11,31,51],[16,36,56],

        [2,22,42].....

]  

最后,我们总结出,该函数就是通过改变序列index获得目标矩阵。

print("transpose.3-dim")
x3 = np.arange(60)
x3 = np.reshape(x3,(3,4,5))
print(x3)

print("transpose(2,1,0)")
# 当transpose()不传任何参数时,作用与T属性类似,arr.T即可完成数组arr的转置
x3 = x3.transpose(2,1,0)
print(x3)

#以下方法也可以创建三维数组
#np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

输出结果:

transpose.3-dim
[[[ 0  1  2  3  4]
  [ 5  6  7  8  9]
  [10 11 12 13 14]
  [15 16 17 18 19]]

 [[20 21 22 23 24]
  [25 26 27 28 29]
  [30 31 32 33 34]
  [35 36 37 38 39]]

 [[40 41 42 43 44]
  [45 46 47 48 49]
  [50 51 52 53 54]
  [55 56 57 58 59]]]
transpose(2,1,0)
[[[ 0 20 40]
  [ 5 25 45]
  [10 30 50]
  [15 35 55]]

 [[ 1 21 41]
  [ 6 26 46]
  [11 31 51]
  [16 36 56]]

 [[ 2 22 42]
  [ 7 27 47]
  [12 32 52]
  [17 37 57]]

 [[ 3 23 43]
  [ 8 28 48]
  [13 33 53]
  [18 38 58]]

 [[ 4 24 44]
  [ 9 29 49]
  [14 34 54]
  [19 39 59]]]

Process finished with exit code 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值