YOLOv11融合[CVPR2024]大核卷积IncepitonNeXt及相关改进思路


YOLOv11v10v8使用教程:  YOLOv11入门到入土使用教程

YOLOv11改进汇总贴:YOLOv11及自研模型更新汇总-CSDN博客 


《InceptionNeXt: When Inception Meets ConvNeXt》

一、 模块介绍

        论文链接:https://arxiv.org/abs/2303.16900

        代码链接:https://github.com/sail-sg/inceptionnext

论文速览:受 ViT 长距离建模能力的启发,大核卷积最近被广泛研究和采用,以扩大感受野并提高模型性能,例如采用 7x7 深度卷积的 ConvNeXt。虽然这种深度算子只消耗少量的 FLOPs,但内存访问成本高,在很大程度上损害了强大计算设备上的模型效率。例如, ConvNeXt-T 具有与 ResNet-50 类似的 FLOPs,但在 A100 GPU 上以全精度训练时,只能实现 60% 的吞吐量。虽然减小 ConvNeXt 的内核大小可以提高速度,但会导致性能显著下降。目前尚未有如何在保持其性能的同时加速基于大内核的 CNN 模型研究。为了解决这个问题,受 Inceptions 的启发,我们将大核深度卷积沿通道维度分解为四个平行分支,即小方核、两个正交带核和一个身份映射。通过这个新的 Inception 深度卷积,构建了一系列网络,即 IncepitonNeXt,它不仅享有高吞吐量,而且保持了有竞争力的性能。例如,InceptionNeXt-T 的训练吞吐量比 ConvNeX-T 高 1.6 倍,并且在 ImageNet-1K 上实现了 0.2% 的 top-1 精度提升

总结:一种基于大核卷积的特征提取模块,轻量化且高性能。


二、 加入到YOLO中

2.1 创建脚本文件

        首先在ultralytics->nn路径下创建blocks.py脚本,用于存放模块代码。

2.2 复制代码        

        复制代码粘到刚刚创建的blocks.py脚本中,如下图所示:

import torch
import torch.nn as nn


class InceptionDWConv2d(nn.Module):
    """ Inception depthweise convolution
    """

    def __init__(self, in_channels, square_kernel_size=3, band_kernel_size=11, branch_ratio=0.125):
        super().__init__()

        gc = int(in_channels * branch_ratio)  # channel numbers of a convolution branch
        self.dwconv_hw = nn.Conv2d(gc, gc, square_kernel_size, padding=square_kernel_size // 2, groups=gc)
        self.dwconv_w = nn.Conv2d(gc, gc, kernel_size=(1, band_kernel_size), padding=(0, band_kernel_size // 2),
                                  groups=gc)
        self.dwconv_h = nn.Conv2d(gc, gc, kernel_size=(band_kernel_size, 1), padding=(band_kernel_size // 2, 0),
                                  groups=gc)
        self.split_indexes = (in_channels - 3 * gc, gc, gc, gc)

    def forward(self, x):
        x_id, x_hw, x_w, x_h = torch.split(x, self.split_indexes, dim=1)
        return torch.cat(
            (x_id, self.dwconv_hw(x_hw), self.dwconv_w(x_w), self.dwconv_h(x_h)),
            dim=1,
        )

2.3 更改task.py文件 

       打开ultralytics->nn->modules->task.py,在脚本空白处导入函数。

from ultralytics.nn.blocks import *

        之后找到模型解析函数parse_model(约在tasks.py脚本中940行左右位置,可能因代码版本不同变动),在该函数的最后一个else分支上面增加相关解析代码。

        elif m is InceptionDWConv2d:
            c2 = ch[f]
            args = [ch[f]]

2.4 更改yaml文件 

yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客

        创建yaml文件,替换原有模块。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, InceptionDWConv2d, []]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)


 2.5 修改train.py文件

        创建Train脚本用于训练。

from ultralytics.models import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

if __name__ == '__main__':
    model = YOLO(model='ultralytics/cfg/models/11/yolo11.yaml')
    # model.load('yolov8n.pt')
    model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,
                amp=True, mosaic=False, project='runs/train', name='exp')

         在train.py脚本中填入创建好的yaml路径,运行即可训练,数据集创建教程见下方链接。

YOLOv11入门到入土使用教程(含结构图)_yolov11使用教程-CSDN博客

三、相关改进思路(2024/11/8日群文件)

        根据Inception模块特性,可替换C2f、C3模块中的BottleNeck部分,代码见群文件,结构如图。

⭐另外,融合上百种深度学习改进模块的YOLO项目仅119(含百种改进的v9),RTDETR119,含高性能自研模型,更易发论文,代码每周更新,欢迎点击下方小卡片加我了解。⭐


 

### CVPR 2024 关于频域卷积神经网络的研究 CVPR 2024 中关于频域卷积神经网络(Frequency Domain Convolutional Neural Networks, FDCNNs)的研究主要集中在探索如何通过频率变换来提高模型性能和效率。这些研究不仅关注理论基础,还探讨了实际应用中的优化方法。 #### 频率域的优势 在传统的时间或空间域中处理图像数据时,卷积操作可能会遇到计算复杂度高、参数量等问题。而在频率域中,由于傅里叶变换的性质,某些类型的滤波器可以更高效地实现[^1]。具体来说: - **减少冗余信息**:自然场景下的图片往往具有局部自相似性和平滑特性,在转换到频谱表示后能够更好地捕捉全局结构并去除不必要的细节。 - **加速运算速度**:对于特定形式的核函数而言,其对应的频域表达可能更加紧凑简单;此外,快速傅立叶变换算法使得正反向传播过程得以显著提速。 ```python import numpy as np from scipy.fft import fftn, ifftn def freq_conv(input_img, kernel): input_freq = fftn(input_img) kernel_freq = fftn(kernel, s=input_img.shape) output_freq = input_freq * kernel_freq result = ifftn(output_freq).real return result ``` #### 应用案例分析 一项研究表明,在目标检测任务上采用基于小波分解的方法能有效增强边缘保留能力的同时降低噪声干扰的影响[^3]。另一篇工作则指出利用离散余弦变换(DCT)作为预处理步骤有助于提升分类准确性,并减少了过拟合的风险[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值